AD=A109 980 COMPUTER SCIENCES CORP FALLS CHURCH VA F/8 9/2

AOA INTE‘RATED ENVIRONMENT II COMPUTER PROGRAM DEV!%g;”E:;T s:gc-:'rc(w
=B0=C~!
UNCLASSIFIED RADC=TR=81~364=PTe1

{ [T
EEEERNEEREEEE

1.0 & k= 22

"“IE_ : = 22

s

»- = [k2
2 s e

’ MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS.1963-A

PHOTOGRAPH THIS SHEET

=
D |x
3 (@) E [EVEL (Ygvnputer SCiences C‘o\? INVENTORY
j M |z

o ADA Tateqcoted Envcvonmcn"':[!'. Cowmpv

e é w e '.De\le(oemen‘l' Speci Recation. Lnterim 'R '|'

- |3 DOCUMENT IDENTIFICATION ISs ?O;Is'mil

S 1
| o [E Gt F30co2-s0-c-a212 Rape-TR-EI-3cw But £
¢ < {
i DISTRIBUTION STATEMENT A
3 Approved for public release;
: Distribution Unlimited
DISTRIBUTION STATEMENT
ACCESSION FOR

S DTIC

ik a0 ek o
3¢/ A A -

UNANNOUNCED D
JUSTIFICATION E L E c T E
JAN25 1982 .
BY D
z DISTRIBUTION /
f AVAILABILITY CODES
' DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED
¥,
A i Copy
i DISTRIBUTION STAMP W
3
- * -
= : 1
1 82 01 2 003
. DATE RECEIVED IN DTIC
- PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2
FoRM DOCUMENT PROCESSING SHEET

DTIC SO 70A

RADC-TR-81-364, Part |
Interim Report

: Decomber 1981

i

o

| O ADA INTEGRATED ENVIRONMENT Il
g; ‘COMPUTER PROGRAM DEVELOPMENT ‘
= SPECIFICATION | !
L, |
< | . "
2 Computer Sciences Corporation

i

:

:

b ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griffiss Air Force Base, New York 1344|

v 1

. r - -

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS

é it will be releasable to the general public, including foreign nations.
i
p RADC-TR-81-364, Part 1 has been reviewed and is approved for publication.
1
3
i
APPROVED: /| =7 (
, DONALD F. ROBERTS
: Project Engineer i
! APPROVED: W\@
. 2
f ~ JOHN J. MARCINIAK, Colonel, USAF '
Chief, Command and Control Division
FOR THE COMMANDER: ﬁ X/
. e
\ JOHN P. HUSS
| Acting Chief, Plans Office
b
4
El

S

= SUSR Y

If your address has changed or if you wish to be removed from the RADC

A mailing list, or if the addressee is no longer employed by your organization,
k| please notify RADC.(COES) Griffiss AFB NY 13441. This will assist us in

1 maintaining a current mailing liset. o

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

UNCLASSIFLED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entereq)

READ INSTRUCTIONS
PORT NuUM 7. GOVY ACCESSION NO| 3. RECIPIENT'S CATALOG NUMBER ;

RADC-TR-81-364, Part 1
4. TITLR cand Subtitie) ’ S. TYPE OF REPORT & PEROD COVERED
ADA INTEGRATED ENVIRONMENT II COMPUTER et PTE Mar 81
PROGRAM DEVELOPMENT SPECIFICATION ep r

€. PERFORMING O1G. REPORT NUMBER
N/A
7. AUTHOR(2) 5. CONTRACT OR GRANT NUMBER(S) |

A ot BN ot vl s e

F30602-80-C-0292]

[9. PERFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS
Computer Sciences Corporation

803 Broad Street ggggig{gZ7OZF/33126F
Falls Church VA 22046
11. CONTROLLING OFFICE NAME AND ADORESS l')z REPORT “"8
: Rome Air Development Center (COES) ecember 1981
‘ Griffiss AFB NY 13441 5’-16‘“""" OF PAGES
‘ 14, MONITORING AGENCY NAME & ADDRESS((f diiferent from Controlling Otfice) | 'S. SECURITY CLASS. (of tAia report)
Same UNCLASSIFIED
132, OECL ASSIFICATION, DOWNGRADING
N/ ASCHEOUL

6. OISTRIBUTION STATEMENT (of thiz Report)

Approved for public release; distribution unlimited. *

17. DISTRIBUTION STATEMENT (of the sdetract entered in Block 20, it different (rom Report)

g

e 1

% Same

i

£

' 18. SUPPLEMENTARY NOTES

ot RADC Project Engineer: Donald F. Roberts (COES) ﬂ

‘; 19. XEBY WORDS (Continue on reverse side if necessary and identily by bdlock number)

8| Ada MAPSE AIE

1 Compiler Kernel Integrated environment
fj Database Debugger Editor

£ KAPSE APSE

'l 20. ABSTRACT (Continue on reverae side if necessary end identily dy dlock number)

i The Ada Integrated Environment (AIE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AIE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programming Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a
minimal APSE, called a MAPSE. The MAPSE is the foundation upon which an

,oj DD, on'5s 1473 e€oimion or 1 nov 68 1s onsoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Deta Entered)

APSE is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

peiiregl

(TS
L J

UNCLASSIFIED

SECURITY CLASSIFICATION OF Twu's 2AGE(When Date Entered)

§

ol 4o

INTRODUCTION

This document presents the Computer Program Development Specifications (Type
BS) for the Computer Program Configuration Items (CPCIs) for the CSC/SEA
design of the Ada Integrated Environment (AIE) under Rome Air Development

Center (RADC) Contract Number F30602-80-C-0292. These specifications are
comprised of the following volumes:

PART I:

Volume 1, Computer Program Development Specification for CPCI KAPSE
Framework.

Volume 2, Computer Program Development Specification for CPCI KAPSE Data
Base System.

PART II:

Volume 3, Computer Program Development Specification for CPCI APSE
Command Language Interpreter,

Volume 4, Computer Program Development Specification for CPCI MAPSE
Configuration Management-System.

Volume 5, Computer Program Development Specification for CPCI Ada
Compiler.

Volume 6, Computer Program Development Specification for CPCI MAPSE
Linker.

Volume 7, Computer Program Development Specification for CPCI MAPSE
Editor.

Volume 8, Computer Program Development Specification for CPCI MAPSE
Debugger. '

Accompanying this document is an Interim Technical Report (ITR), which
describes the principles influencing the preliminary design and provides the
rationale for the decisions made, and the System Specification (Type A),
which presents the functional requirements for the AIE.

Table 1 provides a cross-reference between the AIE Statement of Work (SOW)
and the specifications.

PHASE I SOW REQUIREMENTS A - SPEC. B5 - SPEC.
i i i i
: P i } H
: | Phase I Design i H H
.] []
E i
: PR ! 3.1.1 H H
i i General Requirements E ' E
¥
s |
3 V4101 i 3.1.1.1 { KDBS - 3.2.5 H
$ | Data Base Support, Interfaces to P 3010102 i 3.3 d
(! host facilities (H.W. & S.W.), user | 3.1.4 { ACLI - 3.2.5 '
{ interfaces, tool interfaces i 3.7.1 ! 3.3)
[]]] []
; ; ; ;
I 4.1.1.2 i 3.1.1.1 { KFW - 3.1.1 H
¥ | Portable to maximum extent possible,} 3.1.1.2 i KDBS - 3.1 g
| ! External interfaces should be i 3.1.2 ' ACLI - 3.1.1 }
5 { clearly isolated, clearly | 3.1.4 | CMS - 3.1.1 i
| identified i 3.1.5 ! Compiler - 3,1.1 1
i i 3.1.5.2 { Linker - 3.1 !
! ' ' { Editor - 3.1.1 H
H H | Debugger - 3,1.1 :
i i i i
2 | i i H
a b4.1.1.3 ! 3.1.5.1 ! KDBS - 3.3 |
| | Specify uniform protocol i 3.1.5.2 i KFW - 3.2.5 i
: | conventions between user, tools and |} i ACLI - Command H
E | | MAPSE/KAPSE, formats for invoking | : Utilities !
* | KAPSE/MAPSE facilities should be i i i
! { uniform or identical i ' i
° : i i :
: ! . i i
£ bu.1.1.4 I 3.2.3 ! KDBS - 3.2.5.7 '
P ! Shall include features to protect | 3.2.5 : 3.2.5.8 H
A ! itself from user and system errors | 3.3.7 H 3.3.6 i
E i ! H 3.3.7]
P { } | \
b H '] i
i 4.1.1.5 1 3.7 | KFW - 3.1.1 i
: ! Software should be modular and ! ! KDBS - 3.1 1
! | reusable] | ACLI - 3.1.1 i
! ' i { CMS - 3.1.1 H
&l i H ! Compiler - 3.1.1]
i ! ' | Editor - 3.1.1 '
,; H : ! Linker - 3,3.1 H
' ! ! | Debugger - 3.1.1 H
‘ } i \ |
y
& M -2
1 2
|
R —— C e oA
A s o cgmdbo gty et d »’“"“" \ rf h T e ——— "—‘-‘7'1' H;"'!!h* >SRN LR gy

5 T s o e

Sdhchia v .."’:‘“.‘ e

T o ta ol

PHASE I SOW REQUIREMENTS

A - SPEC

B5 - 8§

PEC

4.1.2
KAPSE DATA BASE REQUIREMENTS

4,1.2.1

Capability to create, delete,
modify, store, retrieve, input, an
output data base objects

3-701-2
d

KDBS

4.1.2.2

Shall provide for all forms of data

necessary to fulfill all SOW
Requirements

3.7.1.2

KDBS

- 302-5 03

4.1.2.3

Shall not be dependent on external
software systems not part of the
host operating system

3.7.1.2

KDBS

- 3.

2.5

4.1.2.4
Support creation and storage of Ad
libraries in source form

'KDBS

4,1,2.5

Capability to define new
categories of objects without
imposing restrictions on computer
information stored in objects

3.7.1.2

KDBS

4.1.2.6

Provide flexible storage facilitie
to all MAPSE tools. Capability to
read and write data base objects
from within any MAPSE tool using
data transfer and control function
and high level I/0 function

3.7.1.2
S

KDBS

4.1.2.7
Capability to create partitions

3-7.102

KDBS

CM - 3

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.2.8

Capability to assign version
qualifiers to objects or groups of
objects. Time/Date and serial
number. Capability to designate
and use default version

3.7.1.2

4,1.2.9

Capability to create object
attributes: History, Category and
Access.

3.7.1.2 KDBS -

W=t
.
VW &N =

wwmphhhvND O
.

Wwwuwwwiww

4.,1.2.10

Capability to control access to
data base objects using version
qualifier, attributes, and
partitions. "Programmable" access
controls; provisjon for privileged
user,

3.7.1.2 KDBS -

O EWN =

.

WWNNDNOND DD
.

we=MmVTOYOYUO WU
.

4,1.2.11 :
Capability to archive data base
objects

3-7-1.2 KDBS b

4.1.2.12

Data base resources and operations
as a result of this effort shall
be available to Ada programmers

A5

3.7.1.2 KDBS - 3.
3

Lo
—— e e - mmfee - e - o ca]rr e - e v e ve B e mnf e - e e e e an ww wm Te|ee e ve e e - o
——— e s e - e me e mefen — - e e mn e s e et |emn e e e em e e e e mefee e v e - —- — -

———- e —- |- - - - mn malee Bn o . e e L v e e e et e - es eeen e S ne —- e e -

12 5 e

4.1.3
KAPSE INTERFACE REQUIREMENTS

P

4.,1.3.1
Specifiy virtual interface for
KAPSE /MAPSE communication

KDBS -

e - - —— - ———— —- —w|—— - m—- —- - = e e h ma et e ma e e e s e e e e hn e e mm e vvfmc an . e " —e - --

TR T TRATTIE AR TR e T e,

LI

walde Ty

3 e &

Felats 2

PHASE I SOW REQUIREMENTS

4.1.3.2

Virtual interface will provide
user capability to invoke MAPSE
tools, interact and exercise
control over invoked tool

KFu - 3.2.4
KDBS - 3.20“

4.1.3.3

Virtual interface will have the
capability to invoke any MAPSE too
from other MAPSE tool

3.1.5.2

3
ACLI -3
1 3

4.1.3.4

Virtual interface will provide the
capability for user LOGON/LOGOFF
INITIATE/TERMINATE functions

Km - 303-2
3.2 5

u.1.3-5
Virtual interface will provide the
capability to execute Ada programs

3

4.1.3.6
User commands for job control and

invoking tools shall have a uniform

format

ACLI - 3.2.5

4.1.3.7

User communication at command leve
will be possible in standard Ada
character set

3.1.5.1 ACLI - 3.1

1

eI L I i R e el D L R R i it i

4.1.3.8

Provide standard terminal interfac
specifications and functions to
facilitate batch and interactive
terminals. Specification will
include protocols for synchronous
user interactions and standards fo
implementing simple editing of the
command line

3.1.5.3 KFW -

e

r

. - " v " e e s o e e, e B e s me s mafin e - s e e e e e e s e s e e —m e e - -
- - - - - - " - B - mmfae . —- -, e wwlom —- - mw ma rwlen mn e me e e e as e e mn e e v e —m e e - =

- o . - - - mm |- - - e me dmfe. _w e - e e e mm e, e e e s mefme e e, e e e - - am -

CM -5

B5 - SPEC

A - SPEC

PHASE 1 SOW REQUIREMENTS

Compiler
Editor
{ Debugger

FW
KDBS
KDBS
KDBS
CM
ACLI
Linker
KDBS
KFW
ACLI

—— e am|em - - s - —— ——

1.1

3.
3.1
3.7
3.1.1.1
1
7
.7 l2
1
7

CM - 6

.1.3.10
! Specify data identified as shared

{ data and provide as standard

.1.3.9
| Specify host interfaces to support

.1.4.1

| Provide basic Run-time support

.1.4,2
Provide basic data transfer and

i control functions to support high

{ level I/0 package

.1.5
GENERAL MAPSE REQUIREMENTS

.1.5.1

Tools written in Ada and conform to
| standard interface specifications

low-level I/0 function and high
.1.5.2

Inter-tool communication via
virtual interface facilities

interfaces
4.1.4

KAPSE FUNCTIONS
facilities

i\ level I1/0 package

R . - — S ems—opegERa 8 T 4 EREELT e e e - - . b e = o w

g s = . . - ®. - =

s

b d
. F

PHASE 1 SOW REQUIREMENTS A - SPEC B5 - SPEC

H ' ' '
! 4.1.5.3 i 3.1.5.1 i ACLI - 3.1.1 '
\ Formats for similar user commands \ \ }
{ shall be uniform and consistent i ! '
| across all tools i ']
i i } }
i] :]
i 4.1.5.4 i 3.1.5.2 { ACLI ~ Appendix H
\ Data produced by one MAPSE tool i 3.7.2 i ACL i
! needed or useful to another tool H { Compiler - Appendix A |
i shalled be saved. Identify such H ' Appendix C |
{ data and provide interface H ' Appendix D |
| specifications H | Linker - 3.3.2.3 :
H d : Appendix C |
: 1 : |
] []]]
; 4.1.6 ; 3.7.2.5 ; Editor - 3.2.5 ;
! MAPSE Editor, includes the H] 3.3 H
| following capabilities: find, alter | ! i
{ insert, delete, input, output, move } | H
| copy, and substitute i H]
| i i H
E] d H

] [)
; s ;
VU7 H i Debugger !
i MAPSE Debugger H ' '
i | b
i] i
I 4.1.7.1 i 3.7.2.6 i\ Debugger - 3.2.5 i
{ Shall function at the Ada level ' 1 '
: :] :
[] [] []]
E 4.1.7.2 1 3.7.2.6 E Debugger - 3.2.5 2
{ Shall support debugging of all Ada | H 3.3.2 H
i language features including] i 3.3.15 i
| concurrent programs i H '
5 ; i i
i i 1 H
P 4.1.7.3 i 3.7.2.6 | Compiler - Appendix C |
| Shall provide linkage between | i Debugger - 3.2.5 i
{ executing program in binary form] ' 3.2.6 i
i and corresponding source program ' { Linker - 3.2.5.3 i
i] i Editor - 3.3 H
i : : |

CM -7

0 RTRN N ST T

B e B W e e LALY

X

o o

3 e -
PO

P A i

Proreitvwe

O

PHASE I SOW REQUIREMENTS

A - SPEC

B5 - SPEC

4.1.7.4
As a minimum shall provide:
Breakpoints
Display Values
Modify Values
Display and modifications of
variables shal be machine
or scalar type
representations at the
users option
Display Subprogram arguments
Modify flow of program
Tracking
Dumps

3.7.2.6

Debugger - 3.2.4

4,1.8
Compiler Requirements

Compiler

4,1.8.1
Operate in a modular fashion;
minimize resource utilization

3-7-2-3

Compiler

3.3

4.1.8.2
Operate in batch, remote batch,
and on-line modes

3.7.2.3

Compiler

3.2.5

u.1.803
Shall be easily rehosted and
retargeted

307.2-3

Compiler

3.2.5

4.1.8.4
Process Ada source and produce an
efficient, equivalent program

3-702-3

Compiler

3.2.5

e I L e POy P T o I ettt

4,1.8.4.1
Process the complete Ada
language

3.7.2.3

—— - == mwlan e e e s W s v e s mdldd dn s mr malar s i maac A dd fm e v e Er e e e e - -

—— - mm m— mmlme e e s wemlae e ca e mn]mn m e maen e e im e e mr e cd] et mn s e cn s e e re mv E ce ee me ae

Compiler

3-2.5

s = mns me mm]mn e mr e mm|an e e ms]s s v maem e - e v e rn e me an cd e R e me ee Ce me o s A == e -

CM -8

(,/

B .) e e o . .a._‘a‘f“

o = "
- Faksibne 4
PRSI s,

g
e

P S

e e e st o - o i e

PHASE I SOW REQUIREMENTS A - SPEC BS SPEC
: i : 1
| 8.1.8.4.2 | 3.7.2.3 | Compiler - 3.2.4 :
| Design pragmas to support require- | ' i
{ ments, design language pragmas i H :
))] t
! E E E
it 4.1.8.5 i 3.7.2.3 { Compiler - 3.2.5 i
{ Produce all necessary outputs i 3.7.2.4 \ Appendix C |
| required to implement separate ! ! Appendix D |
{ compilation and linking and execu H H Appendix E |
{ tion produce output listings any or | ! !
! all of which can be user suppressed. | H i
[] [] [) []
; ; | ;
¢ 4.1.8.5.1 i 3.7.2.3 | Compiler - 3.2.5 i
| Produce symbol attribute listing i ! 3.3.14 i
d i i Appendix E |
' H i |
i i } H
! | : :
| 4.1.8.5.2 | | Compiler - 3.2.5 i
| Produce symbol cross reference ‘ i 3.3.14 i
| listing ‘ d Appendix E |
H i ' i
1 } H 1
i i ! H
| 4.1.8.5.3 i | Compiler ~ 3.2.5 ‘
\ Produce source listings i i 3.3.2 i
! 1 1 Appendix E |
i i i i
: i : !
' : i i
| 4.1.8.5.4 1 3.7.2.3 | Compiler - 3.2.5 i
{ Produce object program listing H 1 3.3.13 \
i i i Appendix E |
i ' i !
i i i i
{ | | \
| 4.1.8.5.5 | 3.7.2.3 | Compiler - 3.2.5 :
{ Collect, store, and output source | H 3.3.4 '
{ program and compilation statistics | H Appendix E |
[] 1 (]]
| | | ;

CM -9

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC
i i i i
! 4.1.8.5.6 i 3.7.2.3 ! Compiler - 3.2.5 |
| Produce environment listing H ' 3.3.13 [
! i : Appendix i
i ! H i
} i 1 i
] !] !
! 4.1.8.5.7 1 3.7.2.3 ! Compiler - 3.2.5 H
{ Produce system management listings | ! Appendix '
] t] [}
| | ; ;
! i i :
3 : p ;
1 4.1.8.6 i 3.7.2.3 ! Compiler - 3.3 }
! Shall perform extensive error i i 3.3.2 H
| checking. Errors shall be associa- | i 3.3.4 i
! ted with the source line number H ' Appendix {
) 1 [] 1]
a z | |
| 4,1.8.6.1 i 3.7.2.3 | Compiler - Appendix i
! Severities of compiler errors shall | H H
! include ! i {
i i] i
i i : i
! i } !
{ 4.1.8.6.2 i 3.7.2.3 ! Compiler - Appendix '
{ Error messages shall contain an ! } i
| error identifier, severity code, and! i 1
! a descriptive text i { i
i i i i
i \ \ i
{ 4.1.8.6.3 i 3.7.2.3 { Compller - 3.2.5 i
| The compilers shall detect 100% of | H Appendix !
| syntax errors and all semantic 1 : i
| errors, any capacity requirement ' i H
! that has been exceeded:; list of all | H i
! error messages generated shall H ! '
{ appear in the Users Manual. } ' H
t] 1) (]
; | | ;
H | | i
i : : :
| 4.1.8.7 i 3.7.2.3 | Compiler - 3,2,t '
! Optimization shall occur at the | i 3.2.7 i
| user's option via language pragmas. | i 3.2.8 !
| Optimization with respect to memory | d 3.2.9 1
! usage and execution speed shall be | i 3.2.10 i
! provided. i i 3.2. 11 H
i i ! 3.2.12 H
| i i i

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.8.8

Shall process Ada source at a rate
of 1000 statements per minute or
faster

3.2.1 Compiler - 3.2.5

- - ——- e, e -
e in

4.1.8.9

Goal shall be no arbitrary limita-
tions; clearly identify any limita-
tions on internal capacities

3.7.2.3 Compiler

3.5

4.1.9

LINKING and LOADING REQUIREMENTS
facilities shall adhere to rules
and specifications contained in
language manuals

3.7.2.4 Linker - 3.2.5

4,1.10
Ada Program Library as specified
in language manuals

3.7.2.4 Compiler - Appendix D

4.1.11
Project/Configuration Management
facilities

307-2-2 CM -

3.
KDBS - 3.
3.
3.

4.1.11.1
Must provide the following reports:
Configuration Composition
Report
Attribute Report
Partition Report
Attribute Select Report

KDBS -

CM -
ACLI -

———— e —n m- —- v mofme om ce e —n mnfen 2m e m mc]en e o —m me == mefem ce ce e e efes e - - —— -
- - e = o e o mmfoe me ve me ae wafam ce el e ccfen mh o me e e ecfee me e wm m mdee —. -l
[VRN HUIPII P NEPUVSIPIU PN SIS JUGN PV WU PP,

—— e - - - Sa——- _—" v —n m- e —n - e ev|er - - me e e cefon - we e ——-

4,1.11.2

Summary reports based on
combinations of attribute,
partition, configuration, or
version qualifier

KDBS -

CM -
ACLI - Command
Utilities

[O —

m —- - . = —————
]

—— = —- - ————

M - 11

PHASE I SOW REQUIREMENTS "A - SPEC BS - SPEC

4,1.11.3

MAPSE shall include a mechanism for
automatic stub generation. MAPSE
shall store source code and
maintain pertinent information for
the stub

3.7.2 Compiler

Linker

1
A) W
w W
o U =

h,1.12

High level I/0 will be an extension
of or alternative to package
specified in the Ada Reference
Manual

KDBS

4.1.13

Specify and include in design
terminal interface routines for
batch and online keyboard terminals
required for Phase II

3.1.5.3 KFW -

4.1.14

Identify, specify and design any
additional host dependent programs
necessary to implement MAPSE on
IBM and Interdata computers

-—wm e = me e e - e - wm e e e e ce ma e ca|re e _—e e e e e e =
———— ——- wm - —— - - - ——- . mm - ——- —- -, e mn]ee e we ce m,- e —. - -
—— e - o - e, e e e volen e e ce cn me e e e —e ne e ee —e aa
e S e e e B T Y

BN e

CM - 12

| Volume)

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

(TYPE B5)
¢

COMPUTER PROGRAM CONFIGURATION ITEM

KAPSE Framework

3 Prepared for

4

€

éj Rome Air Development Center
Griffiss Air Force Base, NY 13441
;é Contract No. F300602-80-C-0292
X

,v‘

4

{ Vol 1

/L

N aaataned

hn o
PPN S - kit

TABLE OF CONTENTS

SeCtion 1 = SCOPCecitsrscerssccsssssscncsasosssosssassscssssssannsss

1.1
1.2

Identification.....ll....'..l..ll.......‘0........‘.....0
Functional sumary....'...........Q.‘........I.II.........

Section 2 - Applicable DOCUMENESeevessesercacccoscsscsssssscsssese

section J - Requj.l"ements......-..............-.-............-.-...

e e o o o
* o * »
Ew N -

wLw ww W

. o ® o ® o & ¢ ® o o @ s o ¢ o o |}
EELEFLEWLWLWLLWWLWWWLLL VDENVORRN o = a

e ® ® o €& o * & o e o « & o e

—‘S\CQNOWCWN—‘ LS A~ VAR | G

-

LLwuwre wu LwuLwrLLwLwLLwLL vwLww
. *

- L]

LN -

Introduction.ccceeecesssccecasscscscassnssscaceccoccsosos
General DescriptioN..cccccceesacessnccsccsscsccssccsssens
Peripheral Equipment Identification....cccceeescccccssace
Interface IdentificationNe..scesscscecccessncscsoccscosasnss
Functional Identification..c.ceeveeecescescccsscsacscsases
Functional Description.....ceceseescscsscccacccscscccscaas
Equipment Description..ceieesesecesscseccssccssssacsssens
Computer Input/Utilization..ececececesascsnscoscenscssscsnee
Computer Interface Block DiagraM.seecessccccesscssascscnns
Program InterfacesS.ccececsccccccrsssososssssosssosocccsssnces
Function Description..c.iicersvacsscessccssscsnsssscssscnss
Detailed Functional RequirementS..ccessccecccssscssscocse
KAPSE INitiatorsecscesseoscacescasescnssconnsccsossacosannas
Logon Utilityeeeeecesoossccesoscnccoscscnscsocssosssasosnse
Request Director...c.ccccceececeoscercocccrossensasnansne
KAPSE Terminator.ceccccscsesscceessesesccacsososscscssoscssvons
Process Administrator....ceeeececcccececssssscsssccncnscas
Task Manager..eceocesecctesoascsssasoscssssssscscnsnsscns
Context Manager..cceeeecetessoscsscsccssccossssssasacsncns
Event Monitor..ccecececeneecesssssssnsscsscsssascscsnsscossans
Volume Manager. ceceseessnacoscassscssssnssscosssassaancess
I/0 Dispatcher.cececoesssancccrscsasecasccccsassnnsseansasns
KFW Loader...ccccescencorsvsssscosssssnssssscasssssansnnss
ADAPTION.ceeesesnssoscesonscescasancncasosassssncssssesana
General Environment....c.ceeeeeesesssccscccccsvsnssssscee
System ParametersS..cceceoscescecssesesssssenssccscssscoscnns
System CapabilitieS..cecvieeeccesssascsnssoscansasscansaas

Section 4 = Quality Assurance ProvisionS....cecessscesccscescscccss

EFEes &
. @
Wi =

Introduction.sesceccecececeensscssssosscssncscssssscssncns
Subprogram TeSting..ccseceecsssoestcecrsccscsosnssssssaces
Program (CPCI) TeStinge...ceceocsscssscccsssserascsacanne
Test RequirementsS.cceecevecesconsssecssccscnscnssscssscnne
Acceptance Test RequirementS..cccececerecoccccsssccsosnns

Vol 1l
iii

3 e R . po- T DT e e
. K »

1-1

3=2
3~z
3-4
5-4
3-7
3=7
3-13
3-23
3-23
3-24
3-26
3-30
3-31
3-50
3-77
5-85
3-93
3-103
3-109
3=111
3=111
3=119
3-120

41
42
U-g
4=
4-5

W. P tam

Lot ko - -

T e e w

TABLE OF CONTENTS

Section 5 = DocumentatioNe.eeccessassnccacscsnnssssncoscasnscscsnns

Genel”aln..-.--......-..-....o.........--.......-..o.-....

Computer Program Development SpecificationNeceecscccccssse
Computer Program Product Specification..ccccecevececcsace
Computer Program LiStingS..cccescocceccccscsccsscsssconse
Maintenance ManuUal...cceecsosceccrsscecsccsssassarsonnosne
USEr S ManUal..eesvecccoscossossascasaosassscavcnsoocnsoes
Rehostability Manual..cceesescscaccccascnsscsossnccnsanccas

.
.

IS WO T
.
-k wd md b ed b
.

[« RN NS VIR NP

Appendix A - KFW Virtual Interface PackageS....ccceesseccccsaccnss

Vol 1
iv

g i o ':_‘;A"-v-* g PR Ty - e . A :

»»»»»»

K i s i e

S

P

e %

Figure

3=-1
3=2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3=-12
3=13
3=-14
3=15
3-16
3-17
=14
3=1y
3=-20
PrYE]
3~2¢
3=23
3=-24
3-25

LIST OF ILLUSTRATIONS

KFW Functional DomMBinS...eeeeeceeccscscnsssscssassonsoaness
Computer/Input/Output Utilization...eceevercnsvsacasccaansas
MAPSE Interface Block Diagram...cssecocevoscesscccsossencns
KFW Program InterfaceS....ccceeeessssccsrocnssvsonssssanane
KFW Interface StateS.ccceecceoscsscccscscossacssonsescenneoss
Ada Feature Interface..ccccecesscssccecscocscscnsscsscnsoss
KFW Kernel InterfaceS..ccacsceecescscccssanssasssssassnnnnes
KFW Virtual InterfacesS..cccececscsccccccsccnssoasonscconcse
KAPSE Loader InstantiationS...cceeseeccsccecccoccsccnsonensn
MAPSE Enclosed Task ObjeCtS.cesecescccssosassscossssccannee
ACLI Instantiation.secsceeececcscesocccnscnsscnsecenscnssnose
Logical BreaKdoWn..cocoesoceoensescravseoressacsasccasasnccss
Logical BreakdoWN...ceeesessceesesecsanctsssssssncansensnsens
PCB InstantiationN.cceceeecscccecoscccsoncccessssscoscanncns
Logical BreakdoWn..eeeeeeesecseoersscossasoscessssssscscess
Logical BreakdoWNe.ccesoeccssssosecosasasaoccscsnasssssasnee
Logical BreakdoWN.ceeeeeesseavecssossssoscsssosocscansasensse

Tank DElayeeesecesessesesssnssncsscssssssccsssssssacssssnns

Logical BreakdoWn.eeseeeesscsesosoeoscescooscsosoonsncscansasss
MAPSE Data Retrieval CycCle...cceceecccecoscesscvssscssccaccas
L0gical BreakdoWN..ceeeceseceosscrsascecossnscsasssssscscnne
Concurrent Initiate RequeSt....cceeecevsvececcccssonssnacnes
Loading New MAPSE ProCesSS...ccceescsscscoccscocssssoccscane
0S/32 Adaptation Strategy.cecccecescccesvsscsvasssonsssssees
0S/32 Adaptation Strategy (SVC USage)eeecccoacossavccaccans

Vol l

Page

3-3
3=5
3-8
3-9
3-10
3-12
3-14
3-16
3-17
3-16
3=25
3=-27
3-32
3=34
3=51
3=-78
3-b0
3=87
3=-94
5=Y96
3-104
3-106
3-110
3-115
3-116

, -_ X

SECTION 1 - SCOPE

e

1.1 IDENTIFICATION

This document presents the Computer Program Development Specification (Type
B5) for the Computer Program Configuration Item (CPCI) callea the Kernel Ada
Programming Support Environment (KAPSE) Framework (KFW). This CPCI provides
the Minimal Ada Programming Support Environment (MAPSE) interface to the

host system.

The purpose of this specification is to define the KFW being designed as
part of the Ada Integrated Environment contract for Rome Air Develoupment
3 Center (RADC). This document will serve to communicate the functional
;f design decisions that have been adopted and to provide a basis for the
g‘ detailed design and implementation phase.

This specification provides the performance, design, and testing
requirements for the KFW. Section 3 presents the performance and design
requirements. Section 4 presents the testing and quality assurance
requirements. This specification, after approval by RADC, will serve as the
development baseline for the KFW,

1.2 FUNCTIONAL SUMMARY

The KFW is designed to provide machine-independent process management and
resource management functions to the MAPSE and to translate machine-oriented
requests into machine-dependent calls.

The KFW provides the administration and control services that are necessary
for the MAPSE to support the execution of multiple programs interacting with
a shared data base. These services are presented as a canonical interface
to a virtual operating system that uses the system facilities of a host

execution domain.

The services are visible to the other MAPSE components through the KAPSE
virtual interface, which enables the other components to be designed with a

minimum knowledge of the host environment. The interface is designed to

F ! specify the functionality that is usually contained within an operating

o Vol 1
& 1-1

system, Therefore, when the host execution domain includes an operating

system, the KFW services are derived from existing facilities to avoid

duplication of or interference with those systems facilities.

The KFW interface is designed to comply with the requirements of the Ada
language (such as tasks). In those instances where the language semantics
are to be defined by implementation considerations, the KFW functionality is

designed so that minimal constraints are imposed in exploiting the host

execution domain, This results in the designed functionality being %
f restricted when the host execution domain does not supply the underlying ‘
facility (such as multiprocessing). J

]

[|

italioll

R A

““"’-J‘. Sy .-

SECTION 2 = APPLICABLE DOCUMENTS

2.1 PROGRAM DEFINITION DOCUMENTS

1. Requirements for Ada Programming Support Environment - STONEMAN,
United States Department of Defense, February 1960.

2. Reference Manual for the Ada Programming Language, United States
Department of Defense, July 1980,

g i b Pt s

s A

¢.

3. Revised Statements of Work for Ada Integrated Environment, Rome Air
Development Center, 26 March 14%80.

2.2 INTER-SUBSYSTEM SPECIFICATIONS

4, Specification for the Ada Integrated Environment.

k| 5. Volume 2, Computer Program Development Specification for CPCI KAPSE
L« Data Base System.

b. Volume 35, Computer Program Development Specification for CPCl APSE
Command Language Interpreter.

7. Volume 4, Computer Program Development Specification for CPCI MAPSE
Configuration Management System.

8. Volume 5, Computer Program Development Specification for CPCI Ada

él Compiler.]
b | 9. Volume 6, Computer Program Development Specification for CPCI MAPSE ?
Linker. '
gy 10. Volume 7, Computer Program Development Specification for CPCI MAPSE 4
3 Editor.

Z 11, Volume 8, Computer Program Development Specification for CPCI MAPSE

3 Debugger.

% 2.3 MILLTARY SPECIFICATIONS AND STANDARDS 9
.ﬁ 12. MIL-STD-483, Configuration Management Practices for Systenms,

L‘ Equipment, Munitions, and Computer Programs, 1 June 1971, :
H 13. MIL-STD=-#440, Specification Practices, 30 October 1yY08.

3
4

Vol 1
2-1

R r—

2.4 MISCELLANEOUS DOCUMENTS

14, Ada Support System Study (for the United Kingdom Ministry of
Defence), Systems Designers Limited, Software Sciences Limiteaq,
1979-1480.

15, Fisher, David A., Design Issues for Aca Program Support

oo ot e e i Srm AT

Environments, Science Applications Inc., SAI-81-26%-WA, October
1980.

16. Ritchie, D. M., and K. Thompson, The UNIX Time-Sharing System, The
Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August
1978.

17. Thompson, K., UNIX Implementation, The Bell System Technical
Journal, Vol. 57, No. 6, Part 2, July-August 1%78.

ok

o O il ekl
JREAPSIUPOURARE.. 0%l TR RO ot ¢

+

.|
I
4

SECTION 3 - REQUIREMENTS

3.1 INTRODUCYTIUN

This section presents the design and performance requirements of the KFw,
The visible specifications for the KFW available to all MAPSE coumponeuts are
incorporated in the KAPSE virtual interface and are presented as an appendia
to this specification. The MAPSE environment support to meet machine-
inuependent portability design requirements, as specifieu in the SUW anc
STONEMAN have been restated in the System Specification (lype A) ana are

incluced here by reference.

3.1.1 General Description

The KFW presents the facilities through which the user accesses the host
operating system. These facilities are embodied in a virtualization of
operating system services that provides for resource management, process
scheduling, and servicing of user requests. The view of the KFW presented
to users and to the MAPSE Tool Set will be consistent from implementation to
implementation. The KFW will also provide the translation of the user
requests from the virtual system to the host system. The KFW may execute on
a bare machine or under an existing operating system, depending upon the
implementation. In each instance, the KFW must interface directly with the
host to proviue the support for the cancnical interface that is visible to

the portaule MAPSE components through the KAPSE virtual interface.

A principal objective of the KFW uesign .s to optimize the coexistence anu
integration of the MAPSE and the underlying operating system. The MAPSE
user's awareness of the host envircnment should be minimal or noneaisteut,
but the MAPSE, through the KFW, should exploit existing facilities, where

appropriate, to maintain the required efficiency.

3.1.2 Peripheral Equipment Iuentification

Standard terminal interface specifications and functions are provided
through the KFW to facilitate the use of a variety of batch and interactive
terminals and to ensure that machine-dependent interfaces do not affect the

user. The KFW also provides the host interfaces required to support low-

1. KAPSE Initijiator
2. Logon Utility
3. Request Director
4, KAPSE Terminator J
, 5., Process Administrator
X 6. Task Manager
- 7. Context Manager
'j 8. Event Monitor
;i Y. Volume Manager
f 10. Input/Output (I/0) Dispatcher

level I/0 functions and basic data transfer and control functions. All nost

dependent computer programs necessary to implement the MAPSE system onh the
IBM and Interdata computers specified for delivery of the system will be
specified and implemented as part of the KFW. Although these initial hosts
are both uniprocessors, considerable attention has been given to the uesign

of the KFW control functions so as to permit efficient implementation on
multiprocessors.

3.1.3 Interface Identification

The KFW interfaces directly with the KDBS, with the MAPSE tools and user
programs through the KAPSE Interface Package and the Ada Tasking Package,
and with the host machine.

3.1.4 Functional luentification

The major functional areas of the KFW are:

11, KAPSE Loader

The 11 fdnctioual domains are depicted in Figure 3=1.

>.2 FUNCTIONAL DESCRIPTION

This section describes the functions of the KFW, the program and equipment

relationships and interfaces and the I/0 utilization of the KFW.

Vol 1
=2

X

R AL Skt

surewoq TeuorIdUNd MIN °T-£ 2andrg
9-900€-1£0 'ONdL
:
o100 HOLVYHL
cgwaco.. oh xmm::._g INIA3 AX3LNOD nSVL $$3008d »m(-uﬁ.zw» | .mmﬁu.h. E..:ooo...s :ohu.(hu.x_
| [1 [T~ 1 1 1 I o7
o™
s ~.
NHOMINVHA
2
i)
[

. B TS AP et i S
R R - - " . PR 2 A et »
. . A T 0 . h q . TP 2 i
R T, . - P N RO » " - Y

e e =

The KFW provides the administration and control services that are necessary
for the KAPSE to support the execution of Aua programs interacting with a
share. data base. These services are presentead as a virtual operating

system interfacing with a host system.

The services are visible to the other MAPSE components through the KAPSE
virtual interface. The KFW is designed to provice the functionality that is

usually contained within an operating system.

The KFW is designed to provide a maximally machine-independent interface to
host systems. Where host operating system features provide the
functionality required by the KFW, the interface to those operating systems
are minimal.

>.2.1 Equipment Description

The host systems with which the KFW must interface are the IbM VM/370 system
and the Interdata 8/.2 under the 0S/32 operating system.

3.2.2 Computer Input/Output Utilization

The KFW design provigdes those facilities required by the MAPSE to
communicate interactively with terminal and storage dagevices that are
configured in the host hardware suite. See Figure 3=2.

The host hardware suite includes physical storage devices on which data may
be recorded and subsequently retrieved. The KFW provides an interface to
these devices as required to support those data base objects that have been
designated as devices for manipulation by an Ada program. The KFW relies on
the availability of device handlers in the host system so that the
correspondence between a data base object and a device may be established

and maintained in a manner consistent with that of & data base object anu a
file.

When console or terminal communication devices are configured, the host
system facilities for handling communication devices are used by the KFW to

implement an interface that is responsive to the needs of all MAPSE tools
that may establish a dialogue with a user.

PUBEEE

G ARAC Aeadnotniin

| NON- }—zl‘ KAPSE e ‘ NON- |
3 PRIVILEGED FRAMEWORK RIVILEGED

[}

i
HOST
SYSTEM
FACILITIES

i
4 STANDARD COMMUNICATION NON-STANDARD
$ DATA CARRIER DEVICES DEVICES
P | DEVICES
: 3

|

i Figure 3-2. Computer Input/Qutput Utilization
#
%

!

: Voll

* 3-5

A consistent user communication interface to the MAPSE requires that the KFW
incorporate in its design a stanuard line-editing protocol for console or
terminal input. Host system facilities, while providing services for
reading and writing characters to communication devices, are unlikely to
conform to this protocol, Therefore the system facilities must permit the
KFW to implement the necessary functionality to support the eaiting of input
characters without interference. A critical requirement is that the defined
MAPSE breakin or attention signal be discernible by the KFW so that a user
may be connected initially to the Logon Utility or may terminate a current
execution state in the MAPSE.

When noninteractive communication devices are configured, such as a card or
paper tape device, the KFW is designed to provide conventional batch
operation by directing the device to the APSE Command Language Interpreter.

Again the host system facilities for handling these devices are useu by the
KFW.

The KFW is designeu to support a variety of nonstandard input and output

requirements. These requirements result directly from an Ada program ana
from the KFW itself.

Through the KFW, an Ada program is provided the functionality to connect to
a device that is not in tue prescribed host haraware suite. In this
instance, the host system facilities must enable the KFW to have control of
the I/0 channel for the device so that the KFW may receive and send

instructions or data from the Ada program to the device or device controller.

Other nonstandard inputs required by an Aua program are specific entry
interrupts and clock data. The KFW is designed to field the interrupts and
read the clock through the host system facilities. Similar interrupt and
timer services are required by the KFW in order to detect the termination of
asynchronous events that it may have initiated in the host environment. For
example, the completion of a MAPSE I/0 operation is recognized by its
termination interrupt being made available to the KFW through the host
system facilities.

Vol 1
3=6

27

taXn o .

R S

TN

‘— P

3.2.3 Computer Interface Block Diagram

Figure »5-3 identifies the interface points between the KFW, the MAPSE

components, and the host system.

3.2.4 Program Interfaces

This paragraph identifies the KFW interfaces and their purposes. The KFW
interfaces through the KAPSE virtual interface to the MAPSE tool set and Ada
user programs, to the KDBS at the kernel level, and to the host system.
Figure 3-4 represents these interfaces.

Figure 3-5 depicts the six primary interfaces provided by the KFW in the
KVI. For each interface its calling and called states are iacentified, such
as, Process-to-Kernel, Kernel-to-Kernel and Process-to-Process. The latter
two modes do not require the use of the HKequest Director intertace ana may
be performed through Ada subprogram calls. In those instances where an
interface has multiple modes, as does the Process Auministrator, the
interface is provided to accommodate each mode through multiple packages

with identical visible specifications.

Appendix A contains the Ada package specifications for the MAPSE to KFW
interfaces, In addition, where appropriate, Ada package specifications for
the major data types used by the interfaces are included.

3.2.4.1 KAPSE Virtual Interface

Specifications of the services the KFW provides to the MAPSE tool set and
Ada user programs are encapsulated into the KFW Interface Package and the
Ada Run-time Support Package.

Ada user programs and MAPSE tools execute in a nonprivileged execution
state. The KFW considers these execution domains to be MAPSE processes.
The functional domains of the KFW and KDBS that execute in a privileged
execution state constitute the Kernel. In order to support the 1logical
distinction between a MAPSE process and the Kernel Process, the KFW supplies
an interface that enables a MAPSE process to request a service provided by
the Kernel Process. Any KDBS or KFW Kernel service that is requested by a
MAPSE process is connected to the Request Director in the Kérnel for the

Voll
3=7

29

wea8erq }o0Td 0BJI9IUT ASAVH "€-€ 2andii

v-LO0L-4Z0"ON 44

SWHVUOOUd
¥0123¥10 1S3N03Y 4"v ¥35n ¥$100L
AL1TLN NODOT . I WILSAS ¥IHIO
HOLYNINEIL/HOLVILINI %4
¥30vVO1 354w 30VIBILNG -
“WOW INNI0A MmN
‘WON 1XILNOD
HOLINOW LN3AI —
MIHILVASIO O/1 i | 43990830
"NINGY S$3006d
L]
s3ovasuum |
OV | RETNED)
150M “ M i ¥oLIG3
{M33) YIDOVNYIN ISYL , o
(80 O/ vav -
| o™
=
lllllllllll VT
Tseox
1 ¥
|
] = TP
|
| 14044NS NOLLI LUV na1AS
) $NXOVE IAIHINY je—as] 1naNIOVNWN
| ‘3LNGIYLLY 'SSIIIV NOLLYUNDIINGD
| RELTEN ‘ONd ALIILN
| s8a% o0y
| nav
| b I _
vaan | I .
130m | |
. | 13A27 §5300Ud 1INUIN 13A37 S5390Ud IS4VIV
.
7 o . - . e T el o o e i AT E il - - e T -

———
D

4
3
1
o
===
| MAPSE !
' TOOLS KDBS :
: ===
! | KFW
(Y A N 4
r-=—=--t|-—-—"=-—=="=—=«w- |
3 |
| V i
I KFW KDBS !
| ST :
! !
¥ L -
¢
5! HOST
SYSTEM
; FACILITIES j
! : |
: HOST
ENVIRONMENT =>
4] MAPSE-KFW
INTERFACE
vi Figure 3-4. KFW Program Interfaces
3
,~l ’
t 4
) Vol 1
g i
;. 3-9 i
A
i
1 ’

ZO

MAPSE-KFW INTER- INTRA- INTRA-
INTERFACE STATES MAPSE | PROCESS | KERNEL
CONTEXT MANAGER X X
EVENT MONITOR X X
1/0 DISPATCHER X X
PROCESS X X
ADMINISTRATOR
TASK MANAGER X
VOLUME MANAGER X

Figure 3-5,

KFW Interface States

service to be recognized and routed to the appropriate logical domain
within the Kernel. The nature of the interface to the Request Director
depends upon the host system facility available for communication between

executing processes.

The interfaces supplied by the KFW are oriented to specific features of the
Ada language. Figure >-b itemizes these features ana shows the functional
domains that provide the interfaces used to satisfy them. In the case of
the standard 1/0 feature, the feature also requires interfaces that are
supplied by the KDBS,

Certain facilities provided by a KFW 1logical domain are designated as
critical facilities. Critical facilities are those facilities that perform
operations which, if misused, may result in unpredictable execution states.
A design requirement of the KFW interfaces is to organize its package
specifications so that the misuse of these facilities is minimized. A means
of accomplishing this requirement is achieved by judicious use of the KLB
access control of Ada library objects in conjunction with the separation of
critical facilities.

3.2.4.2 KDBS Interface

The portability of the KDBS is achieved through the KDBS interface provided
by the KFW in the Kernel. This interface presents to the KDBS a
straightforward, convenient abstraction upon which to specify the storage
and retrieval of information. The abstraction and its accompanying
operations are designed to be compliant with host system facilities that are
generally available. The interface 1is implementable in terms of any
underlying host file management system or device handling packages. The
interface insulates the KDBS in particular from tle nature of the device on
which the abstraction 1is mapped. In the instance of an interactive
communication device, the KFW provides the terminal handler to refine the
transmission of characters, unless precluded by the host. If this occurs

the host terminal handler 1is enhanced to meet the KDBS interface
specification,

Vol 1
5=

90eJIa3ul 9anjeay epy

*9-¢ 3an814

0/1 1A MOT

O/I QYVANVYLS

SHOLYD0TIV 88300V

SLJNHUIALNL AUANI

SiNSVL

Y3IODVNVYIN
ANNTOA

HIDVNYW
ASVL

‘NINav
$8300¥d on

HOLINOW
AN3A3

HIDVNVIN
4X31NOD

NOILNDAX3
WVHOOUd NIVN

S34¥NivV3id4 vav 40
LH0ddNS 30VIYILNI
MDI-ISdVYIN

e m— e

Vol 1l
3-12

3.2.4,3 Host System Interface

The host system interfaces of the KFW provide the MAPSE direct communication
to the host environment. The nature of these interfaces determines the
functional complexity of the KFW.

LT LT Jleeias VAT g ARSI

For the two initial host systems the nature of these interfaces is
significantly different. This requires that the KFW design be aaaptable to

TR TR~

both the low level machine interface of VM/370 and tc the conventional

multiprogramming interface of 08/32. The low level style of interface

Dkl atebud

facilitates the exploitation of the base computer architecture in realizing
the potential of the KFW design. The multiprogramming style of interface
requires that the KFW use the services of the system software. As a

consequence, host software pertormance characteristics are projectea into

o the MAPSE. In those instances that result in unacceptable performance, the

host system interfaces may be tuned to an improved level of capability.

3.2.5 Function Description

The main function of the KFW is to provide the administrative and control
services that are necessary for the KAPSE to support the execution of Ada
programs interacting with a shared data base. Thus the KFW provides the
services of a logical operating system to map the MAPSE onto various host

systems.

The KFW consists of the components identified in Paragraph 3.1.4. A
schematic that informally shows the major functional interfaces provided and
employec. by the KFW is shown in Figure 3-7Y. The schematic omits the

functionality of the Request Director because it is assumea, Where requirea,

to be an implicit property of each functional interface, !

The components of the KFW that execute at the Kernel process level are
depicted in the schematic of Figure 3-7. These components provide the
essential facilities for controlling and servicing multiple MAPSE processes
and for sending and receiving requests to and from the host environment. In :
addition, facilities are included to startup and shutdown the execution of

the KAPSE.

Vol 1l
3-13

§90BJIDIU] TIUIdY MIY °/-¢ 2anBT4

TANYIN \\\\\\

w 8C00C (€0 ON 41

TIAN SINLINIVI NILSAS 150K H_
x 1SOH

llllllll S (VRN SRR S SR

e e e e e — - —— —— — —— —— —

\ \ \ u3gvol AL
\ x & 354V NDDOY

e

—e
-y
r
7 i S
x \
73A31 SS3004d
IINGIN
b: (o)]
y30wNVI
vi
ALIMAN IDVNIVd
IDVYNIVI LHOdINS saox wu(hwzxw.—,z_
IWIL NN vQY
TIATTSSID0Hd
ISdv

SWY¥OOHd 135 1001
¥3Isn ISV ov

In those instances where a KFW component presents an interface through the
virtual interface, the KFW Kernel Process maps the portable virtual
interface functionality into one or more host dependent system facilities.
The schematic of Figure 3-8 identifies the components that provide this
mapping., The bold arrowea lines entering the hatched KFW Kernel component
i éénote the portable KFW interfaces in the virtual interface, anc the arrowed
lines exiting denote the results of the functiocnal mapping to the host
facilities. When the host system facility is a bare machine, the mapping is

isomorphic and the KFW Kernel process becomes the host operating system.

All MAPSE processes are created through an instantiation of the KAPSE Loader

executing as a process under the control of the host system facilities.

Initially, the KAPSE Loader is instantiated to load the Logon Utility. The
Logon Utility is then executed as a MAPSE process. The schematic in Figure
3=9 shows the three instantiations of the KAPSE Loader requirea to establish
the execution domains for the Logon Utility, the APSE Command Language
Interpreter (ACLI) and the MAPSE tool to run as MAPSE processes. A
consequence of the Logon Utility executing as a MAPSE process is that by
definition, it becomes the parent of all MAPSE processes and relies
primarily on the portable interfaces of the KFW Kernel Process. The KAPSE

Loader, however, is dependent upon the direct use of host system facilities.

The Task Manager is the only KFW functional domain that resides in the
g Shared Execution Domain of the MAPSE., This functional domain is used by any
?? MAPSE process enclosing Ada tasks and executes as a part of the MAPSE
process. The schematic in Figure 3-10 shows two MAPSE processes that have

'; enclosed task objects,

Only the portable interfaces of the KFW Kernel process are used by this
fé functional domain whiech is thereby insulated from the host system
facilities. Through the Kernel process tacilities, uifferent executions of
a MAPSE process are initiated in the host environment tor each encloseu task

‘: ob g ect.

The next 11 paragraphs describe the individual components of the KFW.

Vol 1l
X 3-15

=C

~—

L

g S y - R PRI ST L. < +C o T

ﬂh
§90BJI9]UL TENIATA MIN °g-¢ 2anSy3
Z
SIIVIYILNI TINUIN \\&
BE00E 1E0 ON d)
a.pw.vw.._ —! S3INLIDVI WILISAS L1SOH _
|||||||| i _—_——l—_———————f—_—_—_——e—e—— b —— e —_—e e e e e e e —— e —— ——— e

HOLVYNIWHIL HOLVILINI
»

| | B o7 %) it
\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 77

Voll
3-16

T3A3T S$3D0ud
TINYIN

S IS L S, S |

HIDYNVIK

= ALruLn J9VIVe
IDVNIVA 1HOINS seax BDVIYILN
INNLNNY vav
I3AIN SSIV0N
3ISdv
SHYYO0Hd 135 1001
u3sn 3ISdYN MoV

SuoflETIuUBISUI I3peO] ASIVA °6-f 2i1n8yy

SNIOILVIINVLSNI H3GVOT §

Z
€00€ 160 ON 41
AN _ $311119V WILSAS LSOH _
1SOH
2z \\
YIOVNVI HOLVNINYIL WOLVILINI \ \\\
1X3INOD 384w IS4y
% 27
HOLVH ISININGY SS3I0HJ _
HOLINOW
IN3A3
i~
- n
vas) Y3OVNVYW o
cw:um.-: 1o INNI10A [
AIAIVSSIIONL ~
TINYIN
S80%
U3V
Vi
ALFWIN I9VXIVd
J9VHIVY 1HO4INS seax BV
INILNNY vav
T3IAIT SSIV0U
3ISdv % Q\
SWYHOOUd \\
HIsn
% .
P r it Ranrs ¢ r e e r——r o neriiftundiuliialinal od e T -

8393[q0 ysel pasoroug ASAVW ‘QI-€ 2In8yd

.,WJ
<
800C-1£0 ON 41 ~— N
RELEN ﬁ SILINDVS WIISAS 150M _
1SOH A
——— I GG SO, S L N
HIOVNYW HOLVNIWY3L HOLVILING u3avon Atnun
1X31NOO WAV 354w 35dvy N0901
HOLVULSININGY SS3004d ;
HOLINOW
1N3A3
UIOVNVIW
i M INNTOA .
©
=y
Ll |
o™
13A31 5535044 =
TINYIN
seax
SR W] U S S e
“xmuons&
¥SVL
Lisiiic Astian PvasN
JOVIOVE LHOINS saox MmN
INILNNY VOV
13A31 SS300Ud
3ISdv
"| SHYHO0Ud r 138 1001 v
i E T r- 354V
| !
! WSVL i #SVy
L2 J 22 -
L2 4
. - - - - - * -
- — e eonepimERe o T TUEm TS RN T) N

1

3.2.5.1 KAPSE Initiator

The purpose of the KAPSE Initiator is to establish the initial execution

environment for the KAPSE once the Kernel process has been loaued in the
host environment.

Upon establishing an instantiation of the KAPSE, the host system initially
passes control to the KAPSE Initiator. Included as a part of this
preparation is the allocation and loading of the Shared Execution Domain and
the acquisition of the Dynamic Address Domain. Prior to relinquishing

control, the KAPSE Initiator starts the Logon Utility to make the MAPSE
available for user access.

3.2.5.2 Logon Utility

The purpose of the Logon Utility is to await input activity on the batch and
interactive communication devices configured for MAPSE use.

The Logon Utility performs the prescribed Logon protocol, including user
authentication. A process request is then issuea to start execution of the
ACLI. When the ACLI completes execution, the Logon Utility is reactivated
and makes the device available for the next user.

3.2.5.3 Request Director

The purpose of the Request Director is to route requests for Kernel process
level facilities from a MAPSE process to the appropriate KFW or KbLBS
component.

The Request Director implicitly handles all such requests for kernel level
facilities.

3.2.5.4 KAPSE Terminator

The purpose of the KAPSE Terminator is to accomplish the orderly shutdown of
the MAPSE,

The KAPSE Terminator terminates all MAPSE processes and disables each
communication device to the MAPSE to prevent further user interaction. When
the shutdown state 1is achieved, the KAPSE Terminator initiates the
prescribed MAPSE cleanup processes to perform cuata base backup. The KAPSE
Terminator releases the resources acquired by the Kernel Process
relinquishes control to the host.

and

Vol 1l
3-19

3.2.5.5 Process Administrator

The Process Administrator controls the executions of logically concurrent
MAPSE processes. The KFW Interface Package provides a portable interface
from the MAPSE tool set and Aua user programs to the Process Administrator.
This interface provides a consistent methodology for supporting the MAPSE
loosely coupled process execution structure and the requirements of Ada
tasks. A separate address domain is defined for each MAPSE process. Within
this domain the Process Administrator schedules the various executions of

e d ol el

the MAPSE process on the basis of the task control information maintained by

the Task Manager. As a result, the execution of tasks from various MAPSE

processes are interleaved while retaining the intraprocess execution
E sequence mandated by the task control information. Once the Process
,: Administrator has scheduled a process for execution, the process is
' considered to be logically active because actual execution may be delayed by
the host environment.

E 5.2.5.6 Task Manager

The Task Manager synchronizes the concurrent executions of a MAPSE process

in conformance with the intertask communication performed by tasks within
the process. The Task Manager executes within the execution domain of each
MAPSE level process. The Task Manager is responsible for establishing, in
conjunction with the Process Administrator, the execution domains required
! to support Ada tasking. In order to exploit the facilities of the host
' system, the Task Manager relies on the Process Administrator to schedule

tasks for execution when a change in the tasking control within a process is

kg -

Pl S

required, The Process Administrator may schedule one or more tasks,

e

depending on the number of tasks that are ready to be executeu, the number

of processes currently active, and the capabilities of the host system
facilities.

o T o L D

3.2.5.7 Context Manager

-

PP

The purpose of the Context Manager is to .control access and use of the
Dynamic Address Domain and Shared Execution Domain in the MAPSE.

, Vol 1
o 3-20

o4/

- ——— et e
S . N : L . g .

™

t go

The Context Manager is provided to change the address domain of an executing
process. The domains are established by the Context Manager using the host
system facilities that support storage space management for a dynamic

execution environment.

The Dynamic Address Domain is used to enable a process to change its address
domain as defined by the process context map. The Shared Execution Domain

is used to build the MAPSE Run-time System that permits the shared execution
of the KFW Task Manager and the KDBS I/0 Support Package.

3.2.5.8 Event Monitor

The Event Monitor receives, identifies, and traps requested interrupts from

the host environment that are made available to the Kernel process.

The Event Monitor, in conjunction with the Process Aoministrator, schedules
both MAPSE and kernel 1level processes to respond to these traps and
interrupts.

3.2.9.9 Volume Manager

The Volume Manager transfers data between the logical data base maintained
by the KDBS and the logical and physical data devices.

Using the most appropriate features provided by the host system facilities,

logical and physical data devices are manipulated to store and retrieve

information. The Volume Manager, although dependent on the host system

facilities, does not communicate directly with them but uses the facilities
afforded by the I/O Dispatcher. A single request to the Volume Manager may
result in one or more requests to manipulate the associated data device. 1In
these instances, the requests may be chained together and forwarded to the
I/0 Dispatcher.

3.2.5.10 1/0 Dispatcher

The purpose of the I/0 Dispatcher is to synchronize data transfer requests

that have originated from concurrently executing MAPSE processes.

The I/0 Dispatcher provides a portable interface through the virtual
interface that is used by the Volume Manager and MAPSE processes to initiate
I/0 operations to data devices configured in the host environment. The I/0

Vol 1l
3-21

i Aot

g A S WS

R e e - - P

3.2t

,‘
ke B

.

Dispatcher uses the facilities of the Event Monitor to recognize the
completion of all operations it initiates. When necessary, the process

originating the request is suspended through the Process Administrator.

3.2.5.11 KAPSE Loader

The purpose of the KAPSE Loader is to load a process for execution. The
KAPSE Loader uses the host system facilities to retrieve and load a process

that can execute under the control of the host environment. Once executing,

the process becomes a MAPSE process by registering itself through the
Process Administrator interface.

L s

P

(Rl

3.5 DETAILED FUNCTIONAL REQUIREMENYS

3.3.1 KAPSE Initiator

The KAPSE Initiator is the component within the Kernel that receives control
when the Kernel process is loaded for execution in the host environment.

The KAPSE Initiator provides no facilities to other MAPSE components. .
3.3.1.1 Inputs

There are no input arguments defined for Initiator.

3.5.1.2 Processing

The KAPSE Initiator is designed to prepare the KAPSE for process execution.
The KAPSE Initiator uses environment system parameters to create the Dynamic
Address Domain and the Shared Execution Domain. The KDBS and KFW packages

that are to be.executed as an extension of a MAPSE process are placed in the

Shared Execution Domain. The batch and interactive device definitions that

are available for user communication with the MAPSE are derivea, and the

user communication device table is formatted for subsequent use by the Logon

Utility. Once the KAPSE data base is made available the prescribed MAPSE

startup processes are begun and the KAPSE Initiator awaits their completion.

When the execution environment is ready, the Logon Utility is called through

the Process Administrator to respond to user access from the user

communication devices in the user communication device table and the KAPSE
Initiator completes its execution.

3.3.1.3 Outputs

There are no output arguments defined for Initiator.

Vol 1l
3-23

i
1

EA
:
:
;.
:

3.3.2 Logon Utility

The Logon Utility is called by the KAPSE Initiator to allow the MAPSE to be
accessed through the wuser communication devices specified in the
communication device' table. The Logon Utility provides no facilities to
other MAPSE eomponents. It is designed to start execution of a MAPSE
process for an authorized user.

3.5.2.1 Inputs

Upon receiving an input from a device the Logon Utility executes the
authentication protocol that supplies the necessary data to identify and
validate a user. In addition, sufficient information is extracted from the
data to determine which MAPSE process is to be started for the user.
Normally this process is an instantiation of the ACLI. (see Figure 3-11)

3.3.2.2 Processing

The Logon Utility derives the data base object name for the device table
entry, starts an ACLI process for execution, and passes the object name as
the standard input file to the process. The Logon Utility then awaits input
from another device or for a previously started process to attain a finished
or terminated state. In the latter case, the Process Control Block is
deleted and the device table entry is released for a new user or the next
Jjob.

3.3.2.3 Outputs

When a MAPSE shutdown has been started, inputs from interactive user

communication devices prompt the Logon Utility to display the shutaown
greeting.

Vol 1
3-24

~

. e ————————

~
AY

PRI R 580w - v eomctmrengtTIe n PSRy e - -
v 7 -~ - g ,- inki Sk A THL S 4 Do + T

UOTIBTIUBISUL ITOV °[1-f 2InSfg

WILINdHALNI T000L0Md

ALrnan
IOVNONTY NOWLVYIUNIHANY NODOY
GNYWWOD

LT
o) .

A
~ wn
- o~
o
= o
NOLVELSININGY VaHOLVetia VOLVULSININGY,4_ wOLviLIN
2932044 on 8830044 -y
/\
N vaNANI AN AL
noNv1 NODO1 N0DO
ONVWNOD

o SR

e TV A

35.5.35 Request Director

The Request Director is the functional facility through which a MAPSE
process requests a facility provided in the Kernel process. Appenaix A
includes the specification of the Ada package REGUEST_DIRECTOR that is used
by those virtual intertace packages that define an interface to the Kernel
process. See Figure 3-12 for a logical breakdown of the Request Director.

3 From the Request Parameter List that is made available upon initiation, the
‘ Request Director calls the appropriate functional domain to service the

request.

The parameter l1ist is constructed by the Kernel procesé request in the MAPSE
process to include the kind of request and its actual parameters. The
Request_Kernel facility is then called to save the execution context and
parameter list address in the task control block. When this execution of
thie MAPSE process is gontinued. the Request_Kernel facility returns to the

rey e

Kernel process request in order to update its actual parameters.

The following example demonstrates the use of the Request_Kernel interface
by an Ada package.

O i L tantusa e 2 A

REQUEST
DIRECTOR

L REQUEST KERNEL

TP No. 031-2001-A

i
Figure 3-12. Logical Breakdown &

SN

Caa o $o %

g
iAo

e TR
e . e

e~ e

with REQUEST_DIRECTOR; use REQUEST_DIRECTUR;
package boay SOME KVI_PACKAGE is

procedure Some_Facility
(Param_1: SOME_TYPE;
Param_2: in out SOME_TYPE;
Param_3: out SOME_TYPE) is

RPL: REF_REQUEST_SHAPE := new REQUEST_SHAPE(Some_Facility);
procedure This Request is

new Request_Kernel (REQUEST_SHAPE (Some_Facility)),

REQUEST_EXCEPTION: exception;
begin

—3ave in and in out parameters in RPL
This_Request (RPL);

--Restore in out and save out parameters from RPL

exception

when REQUEST_EXCEPTION =>
--Handle Kernel exception made available in TCB
end;

end SOME_KVI_PACKAGE;

The Request Director is initiated to route the specified request to the

appropriate component in the Kernel. Request_ Kernel 1is called by all
virtual interfaces to the Kernel.

3.3.3.17 1nputs
The foliowing input argument is defined for Request Kernel:
Addr_RPL - The address of the Kequest Parameter List.

3.3.3.2 Processing

The address of the parameter list is entered in the task control block for
the task of the MAPSE process that requested the Kernel facility. The

control block 1is updated to save the current context of this process

Vol 1l
3-28

ot K

7 ik b

. . P Y ¥
O AT

i

b e
- SaC EAS

. e s v 'y "
P N S et}

4. _.i

execution. The host system facility is initiated to start execution of the
Request Director and to make available to it the control block address of
the requesting task. When this execution of the process is continued, if -an
exception occurred during the processing of the request, the Kernel

exception name that is made available in the block is raised.
3.3.3.3 Outputs

There are no outputs defined for the Request_Kernel.

Voll
3-29

S ——— T——
!l

3.5.4 KAPSE Terminator

The KAPSE Terminator is the component within the Kernel that is called to
perform an orderly closure of the MAPSE, It is designed to prepare the

MAPSE for shutdown and to terminate execution of the KAPSE in the host
environment.

3.3.4.1 Inputs

There are no- input arguments defined for the Terminator.
F 3.3.4.2 Processing

The KAPSE Terminator waits all current MAPSE processes except the Logon
Utility through the Process Administrator and marks each entry in the user
? communication device table as unavailable. Once all MAPSE processes have
I achieved the wait state, they are terminated and deleted. when the
execution environment is idle, the prescribed MAPSE shutdown processes are

begun, and the KAPSE Terminator waits for their completion.

Upon completion, the Logon Utility is terminated and deleted. The acquired

resources are released to the host environment and the Kernel process J
requests self-termination through the host system facilities.

3.3.4.3 Outputs #

SR OIS

There are no output arguments defined for the Terminator.

o alakiy o

S A oY

¥
|
|
{1

13 Vol 1

3.3.5 Process Administrator

The Process Administrator functionally encapsulates a set of operations on

2 the data structure defined as the process control block. Appendix A
. includes the specification of the Ada package PROCESS_ADMSTR that is made

T VU VST —

. available in the virtual interface., See Figure 3-13 for a logical breakgown !
Lj of the Process Administrator. '

The funaamental executable entity within the MAPSE is defined as a process.
A process results from the compiling and linking of an Ada main program and
the subsequent loading for execution of its Load Object. The MAPSE is
designed to support the logically concurrent execution of multiple processes

i through the services of the Process Administrator.

The execution domain of the MAPSE consists of the Kernel process ana one or

more MAPSE processes. The Kernel process executes in a privileged execution
state while the MAPSE processes execute in a nonprivileged execution state.
The Process Administrator is the part of the Kernel process that is designed
to coordinate and schedule the MAPSE execution domain. The host system
facilities are used by the Process Administrator where necessary to ensure

the efficient, economic execution of a process in the host environment.

) A MAPSE process may invoke the execution of another MAPSE process through
A the Process Administrator. After invocation, the calling and called

processes are candidates for execution. Parameters may be passed between

oy
g -

the calling and called process.

- Tdas ot

MAPSE processes are organized into a tree, where each process is a child

cA

ek e

process of the process that createu it. Processes invoked through the Logon
Utility are considered to be children of the Process Administratc-. A
process is permitted to terminate, suspena, or resume only itself or its
.ii descendent processes. The children of a terminated process are inherited by

their grandparent.

A consequence of the Ada task semantics is for a MAPSE process to
synchronize the execution of different tasks within the Load Object. The

P

Process Administrator recognizes this requirement by maintaining the

scheduling of a MAPSE process to be consistent with the task synchronization
specified within the MAPSE process.

o Vol 1
f:oi 3-31

-
"

52

——— !

s
£ AT TR

[RYORs o0y

PROCESS
ADMINISTRATOR

Figure 3-13,

START PROCESS
TERMINATE PROCESS
READY PROCESS
SUSPEND PROCESS
RANK PROCESS

READ FCB

SUSPEND PROCESS TASK
WAIT PROCESS

SAVE PROCESS
RESUME PROCESS
SWITCH PROCESS TASK
FINISH PROCESS
WRITE PC8

DELETE PROCESS

TP Na, 031-2003-A

Logical Breakdown

Vol 1
3-32

T — S — — “'"'-'-""""""!!!!‘

] The Process Administrator is designed to facilitate the physical parallel
3 execution of processes where the host system facilities support
multiprocessors in the host hardware suite. If sSuch facilities are not
| available, the Process Administrator implements logically parallel
(interleaved) execution of processes.

In host environments that provide system facilities precluding the Process
Administrator from assuming direct control over the scheduling of process
execution, the Process Administrator relinquishes final scheduling of

process execution to the host environment.

, The Process Administrator initiates a process by calling the KAPSE Loader
through the host system facilities and making available to it the name of
the Loaud Object and the process control block address. The KAPSE Loader
communicates with the host system to reaa the Load Object file. The Process

Administrator maintains a record of all control blocks in the Process

Dictionary. For each MAPSE process that is started by the Process
Administrator, a process control block is created. Instantiation of this
block occurs for each separate thread of process execution control through
the creation of a task control block. Each activated Ada task object
results in the creation of a task control block that references the process
control block of the enclosing process (Ada Main program). Consequently the
former is an instantiation of the latter ana identifies a unique name for
each thread of control. When a process contains only a single thread of

N il A

control, a single instantiation of the process block exists and is defined
by the process task block created during process initiation. The Process
Dictionary that is maintained through the process blocks retains the status
3 of all registered MAPSE processes. (See Figure 3-14)

Upon expiration of a standard quantum of time, the Event Monitor calls the

e
e b b A DR

Process Administrator to service the Active Process List. For each active
process, the Process Administrator computes the processing time provided to

: the process during the standard quantum of time. When this processing time
r; has exceeded the prescribed limit, the process execution is suspended and
its instance of the process control block is entered into the Process Ready
f Queue. When the process is executing under the control of the host

f: Voll
v'i 3"33

I ~aaey 0% A GO

uoyjeriuelIsuy g0d ‘4i-¢ 2andya

NOLLVLINY L3Nt 804

AMYNOILI0 $8300W

0L

o8

-0

= T o TR T T B £

o - —

Ny
S E-)

thras s

Voll
3-34

.- o~ — -

g

el 30

(2, LT

.

environment, the Process Aaministrator does not maintain the execution

context for the suspended process but relies on the host system facilities,

y - N
4 *.r BT Ay

3.3.5.1 Start Process

This facility establishes a process execution domain in which the named Load
Object can be loaded. Start_Process is requested when a MAPSE process
requires that a new process be invoked. ‘

3.3.5.1.,1 Inputs

The following input arguments are defined for Start_Process:

LA

Load_Object_Name - The name of the Loaa Object.

TR Lie

Process Param -~ The actual parameters for the process.
Process_Priority - .The process scheauling priority.

Process_Status - One of two values ("suspend" or "ready").

; 3.5.5.1.2 Processing

Start_Process creates a process control block for the new process. This
1 control block is inserted in the Process Dictionary. The KAPSE Loader is
4 called and passes the block address and referenced Load Object. If Process
Status is "suspend" the process is created in a suspended state; otherwise,
the process may be immediately scheduled for execution.

3.3.5.1.3 Outputs

The following output argument is defined for Start_Process:

Addr_PCB - The process control block address of the new process.

o i AR Yy e ol

3.3.5.2 Terminate Process

This facility terminates all execution of the specified MAPSE process.
Terminate_Process may be requested to terminate the requesting process or
any process started by the requesting process.

3.3.5.2.1 Inputs
The following input argument is defined for Terminate_Process:

addr_PCB - The process control block address of the process to be
terminated.

3.3.5.2.2 Processing

Terminate_Process validates the specified control block. The status of the
specified block is changed to terminated in the Process Dictionary and all
instances of the block are removed from the Active Process List and the
Process Ready Queue. When the process is executing under the control of the
host environment, all executions of it are terminated through host system
facilities.

3.3.5.2.3 Uutputs

There are no output arguments defined for Terminate_Process.

3.3.5.3 Ready Process

This facility schedules the execution of the specified MAPSE process.
Ready_Process is requested to schedule the execution of an Ada task within a

process.

3.3.5.3.1% Inputs

The following input argument is defined for Ready Process:
Addr_PCB - The process control block address of the process.

3.3.5.3.2 Processiﬁg

Ready_Process validates the specified process control block. A new task
enclosed by the process is schedulea for execution by inserting its instance
of the block in the Process Ready Wueue. The new task is selected from the
Task Ready Queue maintained by the Task Manager and its status updated
accordingly.

3.5.5.3.3 Outputs

There are no output arguments defined for Ready_Process.

—_—

5.3.5.4 Suspend_Process

This facility suspends the execution of a process or the execution of a task

within a process.
3.3.5.4,17 Inputs
The following input arguments are defined for Suspend_Process:

Addr_PCB -~ The process control block address of the process enclosing
the task.

Addr_TCB - The task control block address of the task to be suspended.
3.5.5.4.2 Processing

Suspend__Process validates the specified control blocks. The process

execution specified by the task control block is removed from the Active
Process List.

3¢3.5.4.3 Outputs

There are no output arguments defined for Suspend Process.

Vol l

. _—
3.3.9.5 Rank Process

; This facility modifies the scheduling priority of the specified process

i execution. Rank_Process is used to change the priority of an Ada task
within a process.
3.3.5.5.1 Inputs

fi The following input arguments are defined for Rank Process:

gi-o Foi

Addr_PCB - The process control block address of the process enclosing
the task.

Addr_TCB - The task control block address of the task to be ranked.
3.3.5.5.2 Processing
Rank_Process validates the control blocks. The specified instance of the

process block is set for execution ana schedulea in the Process Ready Queue
in accordance with the priority in the task control block.

i 3.3.5.5.3 Outputs

; There are no output arguments defined for Rank_Process.

A T

‘
4
i

3.3.5.6 Read PCB

This fac.lity reads the contents of the specified process control block into
the designated space.

Read_PCB may be requested to read the block of the
requesting process or of any dependent process of the requesting process.

3.3.5.6.1 Inputs

The following input arguments are defined for feau PTB: J

Addr_PCB - The address of the process control block to be read. {

Addr_VPCB - The address in the requesting process of where the contents
of the process control block are to be placed.

3.35.5.06.2 Processing

]
Read_PCB validates the specified process block. The contents of the block i
are placed in the aesignated space.

3.3.5.6.3 Outputs

There are no output arguments defined for Read_PCB.

o

finla ¥ Yi: v AR

3.3.5.7 Terminate Process Task

This facility terminates a concurrent execution of the specified MAPSE
process. Terminate_Process_Task is requested in oracer to terminate the
execution of an Ada task within a process.

3.3.5.7.1 Inputs
The following input arguments are defined for Terminate_Process lask:

Addr_PCB - The process control block address of the process enclosing
the task.

Addr_TCB - The task control block address of the task to be terminated.
3.3.5.7.2 Processing

Terminate_ Process_Task validates the specified process and task control
blocks. The instance of the process block is entered into the Process
Termination List. Any occurrence of it in either the Active Process List or
Process Ready Gueue is removed. When:it is in the Active Process List and
is executing under the control of the host environment, this execution of

the process is terminated through the host system facilities.

3.3.5.7.3 Outputs

There are no output arguments defined for Terminate_Process_Task.

A WL

R 2.

R

“ 7
-

e v TR
P

3.3.5.8 Wait Process

This facility waits all executions of a process depending upon the status of

another process. Wait_Process may be requested to wait the requesting

process or any process started by the requesting process.

3.3.9.0.1 Inputs

The following input arguments are defined for Wait_Process:

Addr_PCB - The process control block address of the process to be

waited.

Addr_PCB - The process control block address of the process on

which the wait depends.
Wait_Condition - The condition on which to wait.

3.3.9.8.2 Processing

Wait_Process validates the specified process control blocks. The status of

the block for the process to be waited is changed to waitea in the Process
Dictionary and all instances of it are removeu from the Active Process List

and placed in the Process Ready Queue. All process executions are removed

from the Active Process List and are suspended as required using host system
facilities. Resumption of process execution occurs upon the wait condition

being satisfied or through an explicit request to resume execution.

53.3.5.8.3 Outputs

There are no output arguments defined for Wait_Process.

Voll
3-43

—

3.35.9.9 Save Process

; This facility saves a waitea process as a Load Object. Save_Process may be 1
' requested by the process which started the waited process.

3.5.5.9.1 Inputs J

s 3 oo

The following input arguments are defined for Save_Process:

L2 it B

Addr_PCB - The process control block address of the process to
be saved.

RS i o

Load_Object_Name - The name of the Load Object.

3.3.5.9.2 Processing

Save_Process validates the specified process control block. The status of

the block for the process is changed to saved in the Process Dictionary and

a Load Object of the process execution domain is created with the name
specified for the Load Object.

3¢3.5.9.3 Outputs

There are no output arguments defined for Save_Process. :

i D

gty s
AL IR - o

i
3
L
1
" Vol 1
k> 3-44

st RN

-

£ A piid axi ey
PACICL AN SR ARRBAR UL X ot i

- ey a"‘rr
PTSQURSRIR LS Ay

3.5.5.10 Resume Process

This facility resumes the execution of a waited MAPSE process.

Resume_ Process may be requested by the process that started the

waitea
process.,
3.3.5.10.1 Inputs
The following input argument is defined for Resume_Process:
Addr_PCB - The process control block address of the process to be

resumed.

3.3.5.10,2 Processing

Resume_Process validates the specified process control block. The status of

the block for the process to be resumed is changed to ready in the Process
Dictionary. Instances of the block in the Process Keady Queue are now
available to be scheduled for execution.

3.3.5.10,3 Outputs

There are no output arguments defined for Resume_Process.

e T

= B AN

iyrilite:

’ e o

5.3.9.11 Switch Process Task

This facility suspends and reschedules the execution of a process. Switch_

Process_Task is requested so that a new Ada task within a process is
scheduled for execution.

3.3.5.11,1 Inputs
The following input arguments are defined for Switch Process Task:

Addr_PCb - The process control block address of the process enclosing
the task.

Addr_TCB - The task control block address of the task to be suspended.

3.5.9.11.2 Processing

Switch _Process Task validates the process control block. The specified
instance of the block is suspended by removing it from the Active Process
List. A new task enclosed by the process is scheduled for execution by
inserting its instance of the block in the Process Ready Queue.

3.3.5.11.3 Outputs

There are no output arguments defined for Switch Process_Task.

Vol 1l
3-46

e i o b e etk

6

RWErL R

2

A

it

IR o -

3.3.5,12 Finish Process

This facility terminates the execution of a MAPSE process.

Finish_Process

is requested to perform self-termination of a process.
3.3.5.12.1 Inputs
the following input argument is defined for Finish Process:

Process_Param - The actual parameters to be returned to the starting
process.

3.3.5.12.2 Processing

Finish_Process removes the process control block from the Active Process

List and the block's status is changed to finished in
Dictiouary.

the Process
Any actual parameters are placed in the process control block.

5.3.5.12.3 Outputs

There are no output argunents defined for Finish_ Process.

Vol 1l
3-47

3.35.5.13 Write PCB

This facility writes the contents of the designated space into the specified
process control block. Write_ PCB is a restricted request that is used to
4 change the contents of the block of the requesting process or of any
dependent process of the requesting process.

3.3.5.13.1 1nputs

Fagd oA AW e Mo peige

The following input arguments are defined for Write_PCB:
Addr_PCB - The address of the process control block to be changed.

Addr_VPCB - The address in the requesting process of where the ,

information to be written into the block is located. }

3 1

}i 3.3.5.13.2 Processing H
i

- Write PCB validates the specified block. The contents of the block that are 1

. to be inserted are checked for validity and are then placed in the block.
| Only a limited set of visible block items may be changed.

3.3.5.13.3 Outputs

There are no outputs defined for Write_ PCB. :

Vol 1 j
3-48 |

ik
P I L

@A gt

Oy

—— » R o e oo o o amens £ okiiie g ——

3.3.5.14 Delete Process

This facility removes the existence of a MAPSE process. Delete_Process may

be requested by the process which started the specified process.

3.3.5.14,1 Inputs
The following input argument is defined for Delete_Process:

Addr_PCB - The process control block address of the process to be
deleted,

3.3.5.14.2 Processing

Delete_Process validates the specified process control block. The block is
removed from the Process Dictionary and its space made available for
reassignment. A process may only be deleted if it is in a finished or
terminated state. When a process to be deleted has started processes that
are in a finished or terminated state, these processes are automatically
deleted. If the started processes are not in a finished or terminated

state, the starting process for these processes is made the requesting
process.

3.35.5.14.3 OQutputs

There are no output arguments defined for Delete_Process.

Vol 1l
3=49

2 K‘*";,. e s

J - & ol\s
RPOURPRPOP o SO

5.3.b Tlask Manager

The Task Manager functionally encapsulates a set of operations on the data
structure defined as the task control block. Appendix A includes the
specification of the Ada package TASK_MANAGER which is made available in the

virtual interface. See figure 3-15 for a logical breakdown of the Task
Manager.

A MAPSE process may synchronize the concurrent execution of different code
domains within the process in accordance 'with the semantics of Ada tasks.
The Task Manager is designed to provide the necessary functionality to
support Ada tasks using facilities available in the Kernel through the
Process Administrator. Information required to control and schedule tasks
is maintained with the Task Manager. This task intormation is accessible to
the Process Administrator when process scheduling is to be performea within
the MAPSE. A conseguence of the design is that c¢he Task Manager is
insulated from changes in the host system that would affect task execution.
In addition, because task information is accessible to the Process

Administrator the number of explicit requests from the Task Manager to the
Kernel is minimized.

The Task Manager is designed to cooperate with the Volume Manager, 1/0
Dispatcher, and Event Monitor to synthesize those functional requirements of
a MAPSE process that may effect the harmonious execution of its tasks.
Typically these requirements necessitate the use of facilities within the
Kernel that result in the task being placed in the wait state pending
delayed action in the host environment. An objective in supporting
concurrent task execution is to ensure that such a task does not
inadvertantly cause the enclosing MAPSE process to be stalled in its

execution when other tasks within the same process are candidates for
execution.

The Volume Manager in the Kernel performs data transfers between MAPSE level
processes and the host environment. Normally the task requesting the data
transfer, using Ada I1/0, must await completion of the operation. Therefore,
it is incumbent the Volume Manager to update the appropriate task
information maintained by the Task Manager and to initiate a new scheduling
decision by the Process Administrator.

Vol 1
3-50

1

P L™

LG m eB D

ST o

TASK
MANAGER

CREATE TASK

SCHEDULE TASK

DELAY TASK

ACCEPT ENTRY

ACCEPT ENTRY FAMILY
ENTRY CALL

ENTRY FAMILY CALL
CONDITIONAL ENTRY CALL
CONDITIONAL ENTRY FAMILY CALL
TIMED ENTRY CALL

TIMED ENTRY FAMILY CALL
END RENDEZVOUS

WAIT DEPENDENT TASK
TERMINATE TASK

ABOAT TASK

SELECT ALTERNATIVE
FAIL TASK

SET INTERRUPT

ACCEPT EXCEPTION
ATTRIBUTE TERMINATED
ATTRIBUTE PRIORITY
ATTRIBUTE STORAGE
ATTRIBUTE COUNT

TP No. 031.2004-A

Figure 3-15, Logical Breakdown

;e SR

32

R

v

-

The Task Manager depends upon the Event Monitor to recognize that a aqata

transfer has been completed and for the appropriate task information to be

updated. The task may then be rescheduled for execution by the Process

Administrator.

In addition, the Task Manager relies upon the Event Monitor to coordinate

the scheduling of tasks that have been associaied with specific interrupts

by intercepting the interrupt so that the appropriate task information is
updated.

- : ST T e e e e pre—— e
o wy ‘ . . 3 7
T ,; e !'iyr,.,.,‘.‘!_ | . . X .)

$9 o g

i SR

e e, At o A

T -

3.35.6.1 Create Task

This facility creates a task control block. Create_Task is called by the

prologue associated with the enclosing declarative part and executes as a
procedure under the calling task.

3.3.6.1.1 Inputs

The following input arguments are defined for Create_Task:

Addr_TCB - The address of the space allocated for the task
control block.

Addr_DTR - The address of the Dependent Task Record.

Addr_ESC - The address of the Enclosing Static Context.

Task_Priority - The static priority defined for the task.

Task_IEP - The Initial Execution Position for the task.

TCB_Alt - The Alternative Constraints for the task control
block.

3.5.0.1,2 Processing

Create_lask initializes the space allocated to the task control block. The
block chains of dependent tasks for the guardian task and scope are
updated. The status of the specified task is set to indicate that the task
is created and is awaiting activation (elaboration).

3.3.6.1.35 Outputs

There are no output arguments defined for Create_Task.

-3 il S

K

PN,

3.3.6.2 Schedule Task

This facility schedules a task for execution after the declarative part of

the task body has been elaborated. Schedule_Task is called by the prologue
associated with the enclosing declarative part and executes as a procedure
under the calling task.

3.3.6.2.1 Inputs

The following input argument is defined for Schedule Task:

Addr_TCB - The task control block address of the task to be :
scheaouled. .

3.3.6.2.2 Processing

The status of the specified task is changed to indicate that the task is

ready for execution. The task control block is entered intc the queue of
tasks ready for execution.

3.35.6.2.3 Outputs

There are no output arguments defined for Schedule_Task.

Voll
3-54

3.3.6.35 Delay Task

This facility suspends execution of a task for at least the specified
quantum of time. Delay Task is called by a task executing a delay statement
or a timed entry statement and a new task is scheduled through the Process
Administrator.

3.3.6.3.1 Ipputs

The following input argument is defined for Delay_Task:

Time_Delay - The quantum of time to suspend task execution.

3.3.6.3.2 Processing

The status of the task is changed to indicate that the task

has been
3| suspended for the specified quantum of time.

The task control block is
X entered into the queue of tasks that are currently suspended.

3.3.6.3.3 Outputs

| There are no output arguments defined for Delay Task.

5.3.6.4 Accept Entry

This facility synchronizes a service task of a MAPSE process executing an
accept statement with the execution of a task requesting the entry for this
accept statement. Accept Entry is called by the service task.

: 3.3.6.4.1 Inputs
The following input arguments are defined for Accept Entry:

:; Entry_No - The identification of the accept statement entry.
1 Null Accept - The condition that the entry is parameterless and the

accept statement does not include executable statements.

3.3.6.4,2 Processing

;; The entry queue for the specified entry is inspected for a task waiting for

‘ this entry. If there is no waiting task, the service task status is changed

to indicate that the task is awaiting a request for the specified entry and

a new task for this process is scheduled through the Process Administrator.

i If there are tasks awaiting this entry the first task is removed from the

queue for servicing. When the task to be serviced is in a delay status, the

delay condition is cancelled. The actual parameters associated with the

request are made available to the service task and execution control is

%‘ directed to the service task to complete execution of the accept statement.

';, When the Null Accept condition is satisfied execution of the service task is

; continued if it is the highest priority task, otherwise a new task is
scheduled through the Process Administrator.

3.3.6.4,3 Outputs

There are no output arguments aefined for Accept Entry.

Vol 1
3-56

: W‘p‘\.. - S~ S w . .‘A"'T"-" i o e N R

P U S

T —— .

———E e W

e i g

-

e - Amaa

3.3.6.5 Accept Entry Family

This facility synchronizes a service task of a MAPSE process executing an
accept family statement with the execution of a task requesting the family
member entry for this accept statement. Accept Entry Family is callea by

the service task.
3.3.6.5.1 Inputs
The following input arguments are defined for Accept_Entry Family:

Entry_No - The identification of the accept statement entry.
Entry_Index - The identification of the entry family member.
Null_Accept - The condition that the entry is parameterless and the

accept does not indicate executable statements.
3.3.6.5.2 Processing

The processing is identical to that defined for Accept_Entry once the entry

cueue has been located for the entry family member.
3.3.6.5.2 Outputs

There are no output arguments defined for Accept Entry Family.

Vol
3-57

3.3.6.6 Entry Call

This facility synchronizes a task of a MAPSE process executing an entry
statement with the execution of the service task defining the entry.
Entry_Call is called by the task executing the entry statement.

3.3.0.6.1 Inputs

The following input arguments are defined for Entry_Call:

Addr_TCB - The task control block address of the service task.
Entry_No - The identification of the requested entry.

Parameters - The actual parameters for the requested entry.

3.3.6.6,2 Processing

The actual parameters for the request are saved and the requesting task
control block is appended to the specified entry queue. If the specified
entry is closed, a new task is scheduled through the Process Adninistrator.
Otherwise, when the specified entry is open, all other open entries for the
service task are closed and the service task status is changed to indicate
that the task is ready for execution at the control point currently
associated with the entry. If the service task has been waiting at a delay
statement, the delay condition is cancelled. Wh=en the service task has been
waiting at a terminate statement, the changes in the dependent task
relationships are propagated as required, If the service task is in a
termination status the exception status of the requesting task is changed to

indicate a tasking error exception. A new task is then scheduled through the
Process Administrator.

3.3.6.0.,3 Outputs

There are no output arguments defined for Entry Call.

ot o N

2
¥

¥

iy

.
.

3.3.6.7 Entry Family Call

This facility synchronizes a task of a MAPSE process executing an entry
statement for an entry family member with the execution of the service task
defining the entry family. Entry Family Call is called by the task

executing the entry statement.
3.3.6.7.1 Inputs
The following input arguments are defined for Entry Fawily Call:

Addr_TCB - The task control block address of the service task.
Entry No ~ The identification of the requested entry.
Entry_Index - The identification of the entry family member.

Parameters - The actual parameters for the requested entry.
3.3.6.7.2 Processing

The processing is identical to that defined for Entry_Call except for
locating the entry and entry queue for the entry family member.

3.3.0.7.3 Outputs

There are no output arguments defined for Entry_Family_ Call.

3.3.6.8 Conditional Entry Call

This facility conditionally synchronizes a task of a MAPSE process executing
a conditional entry statement with the execution of the service task
defining the entry. Conditional Entry_Call is called by the task executing
the conditional entry statement.

3.3.6.8.1 Inputs
The following input arguments are defined for Conditional_Entry Call:

Addr_TCB -~ The task control block address of the service task.
Entry No = The identification of the requested entry.
Parameters - The actual parameters for the requested entry.

3.3.6,8.2 Processing

The processing is similar to that defined for Entry_Call. When the

specified entry is closed, execution of the requesting task is continued
with the condition that an immediate rendezvous has failed with the service
task. The task is not appended to the specified entry queue.

3.3.6.8.3 Outputs
The following output argument is defined for Conditional Entry Call:

Condition = The condition as determined by the status of the

requested entry.

|
Al
|
3
3

3.3.6,9 Conditional Entry Family Call

This facility conditionally synchronizes a task of a MAPSE process executing
a conditional entry statement for an entry family member with the execution
of the service task defining the entry family.

Conditional_Entry Family Call is called by the task executing the
conaitional entry statement.

3.3.6.9.1 Inputs

The following input arguments are defined for Conditional Entry_Family_ Call:

Addr_TCB - The task control block address of the service task.
Entry_No - The identification of the requested entry.
Entry_Index The identification of the entry family member.

Parameters - The actual parameters for the requested entry.

3.3.6.9.2 Prccessing

The processing is identical to that defined for Conditional_Entry_Call but
for locating the entry and entry queue for the entry family member.

3.3.6.9.3 Outputs
The following output argument is defined for Conditional Entry Family Call:

Condition - The condition as determined by the status of the

requested entry family member.

R

Spb ode ol o SR e s S

T e o e

R e i Y s

2 35

eaiinlé:
|l e e el

e

3.5.6.10 Timed Entry Call

This facility conditionally synchronizes a task of a MAPSE process executing
a timed entry statement with the execution of the service task defining the

entry. Timed Entry_Call is called by the task executing the timed entry
statement.

3.3.6.10.1 Inputs

The following input arguments are defined for Timed_Entry_Call:

Addr_TCB - The task control block address of the service task.
Entry No - The identification of the requested entry.

Parameters - The actual parameters for the requested entry.

3.3.6.,10.2 Processing

The processing is identical to that defined for Conditional Entry_Call

except that when the entry is closed the requesting task is appended to the
specified entry queue.

3.3.0,10.3 Outputs
The following output argument is defined for Timed_Entry_Call:

Condition - The condition as determined by the status of the
' requested entry.

Vol 1l
3-62

v A Aottt il i

: -k i 22
Fgw

3.3.6.11 Timed Entry Family Call

This facility conditionally synchronizes a task of a MAPSE process executing
a timed entry statement for an entry family member with the execution of the
service task defining the entry fanily. Timed Entry Family Call is called
by the task executing the timed entry statement.

3.3.6.11.1 Inputs
The following input arguments are defined for Timed_Entry Family Call:

Addr_TCB ~ The task control block address of the service task.
Entry No ~ The identification of the requested entry.
Entry_Index - The identification of the entry family member.
Parameters -~ The actual parameters for the requested entry.

3.5.6,11.2 Processing

The processing is identical to that defined for Timed_Entry_Call except for
locating the entry and entry queue for the entry family member.

3.3.6.11.5 Outputs
The following output argument is defined for Timed Entry Family Call:

Condition - The condition as determined by the status of the
requested entry family member.

Vol 1l
3-63

IR Ay = ge o _ S : o oogeaue
> . e TR " flen T 20N - . AR . - . " et
’ PPTIR & ity 4. - . . 2ty Lt g .

.5 adii

s R LR

]

-l W

NG

A v)
PULINUURM Y g

X
UL

e

3.3.6.12 End Rendezvous

This facility decouples a service task of a MAPSE process from the task it

is currently servicing. End_Rendezvous is called by the service task upon
the completion of an accept statement.

3.3.0.12.1 Inputs
There are no input arguments defined for End_Rendezvous.
3.3.6.12.2 Processing

The status of the task that has been serviced is changed to indicate that it
is ready for execution at the control point following the entry call unless
a task failure has occurred. A new taSk is scheduled for execution through
the Process Administrator, unless the accept statement completed by the

service task is enclosed by an outer accept statement.
3.3.6.12.3 Outputs

There are no output arguments defined for End_Rendezvous.

Vol 1
3-64

ey

Y

3.3.6,13 Wait Dependent Task

This facility synchronizes continued execution of a MAPSE process or a task

within a MAPSE process with the termination of any dependent tasks.
Wait_Dependent_Task is called by the thread of execution that is to wait.

3.3.6.13.1 Inputs

The following input argument is defined for Wait_Dependent_Task:

i Addr_DIR - The address of the Dependent Task Record.

3.3.6.13.2 Processing

To be determined during implementation.

3.3.6.15.5 Outputs

There are no output arguments defined for Wait_Dependent_Task.

%
A
b4
¢
g b
bi
9
A
&
g
' * Vol 1l
3-65]

ot APIIR WIS

5¢

3.3.6.14 Terminate Task

This facility terminates execution of a currently executing task within a

MAPSE process. Terminate_Task is called by the task requesting to be
terminated.

3.5.6,14,1 Inputs
There are no input arguments defined for Terminate_Task.

3.3.6.14,2 Processing

2 The status of the task is changed to indicate that it has terminated. The
changes to any dependent task relationships resulting from its termination

are propagated and the task control blocks of any dependent tasks are
5, released.

3.3.6.14,3 Outputs

There are no output arguments defined for Terminate_Task.

+ Vol 1
3-6¢

LIV

ik ana P A

£ PRI S, -

3.3.6.15 Abort Task

This facility asynchronously terminates a task within a MAPSE process.

3.5.6.15,1 Inputs
The following input argument is defined for Abort_Task:

Addr_TCB " - The task control block address of the task to be aborted.

3.3.6.15.2 Processing

The status of the task is changed to indicate that it has been terminated.

If the task has requested a delay or an entry call, these requests are

cancelled. If the task is currently servicing an entry request, the
rendezvous is cancelled. The changes to any dependent task relationships
resulting from the termination of the specified task are propagated.

3.3.6.15.3 Outputs

There are no output arguments defined for Abort_Task.

3.3.6.16 Salect Alternative

This facility conditionally synchronizes a service task of a MAPSE process
executing a select statement with the execution of a task requesting an open
entry enclosed by the select statement. Failure to synchronize with a task

may result in the service task being terminated. Select_Alternative is
called by the service task.

3.5.6.16,1 Inputs
The following input argument is defined for Select_Alternative:

Select_Table - The table describing all the alternatives enclosed
by the select statement.

3.35.6.16.2 Processing

The open alternatives are investigated in the task control block. When only
entry alternatives are open, the corresponding entry queues are inspected
for a waiting task. If only one entry has a nonempty queue, the first task
is removed from the queue for servicing. If multiple entries have nonempty
queues, a queue is arbitrarily chosen and the first task is removed for
servicing., The removed task is placed in a rendezvous state. When the task
to be serviced is in a delay status, the delay condition is cancelled. The
actual parameters associated with the entry are made available to the
service task and execution control is directed to the service task as
defined in the Select Table. When the open alternatives include delay
statements and there is no task to service, a delay alternative from the set
of equivalent-valued delay statements is chosen and the service task is
Suspended for the specified quantum of time,

When the open alternatives include a terminate statement, it is chosen if
the termination conditions are satisfied in the Dependent Task Record of the
guardian task. The service task is terminated if all dependent tasks in the
dependent task records of the guardian task have terminated or are suspended

awaiting a terminate statement. Otherwise, the service task is suspended in
a terminate state.

Voll
3-68

¥

If the open alternatives do not include a aelay or selectable terminate, the
gervice task is suspended to await a request for an open entry alternative.
In the event that there are no open alternatives, the else alternative if
available, is selected by the service task. When no else alternative is

available, the select error exception is raised in the service task.

Upon suspending the service task, a new task for this process is scheduled
through the Process Administrator.

3.3.6.,16.3 Outputs

There are no output arguments defined for Select Alternative.

S0 5

it

R
T

M
F i
X
{
;4

Vol 1
i 3-69

B . ST S o -

- e

S R o)

e ——akl.

et

3.3.6.17 Fail Task

This facility causes the failure exception condition in a task within a
MAPSE process.

3.3.0.17.1 Inputs
The following input argument is defined for Fail Task:

Addr_TCB - The task control block address of the task to receive the
failure exception.

3.3.6.17.2 Processing

The exception status of the task is changed to indicate that a failure
exception has been received. 1If the task has requested a delay or an entry
call, these requests are cancelled. In these instances and when the task
has been suspended, the status of the task is changed to indicate that it is
ready for execution and the Process Administrator is called to schedule a
new task. When the failed task is currently running, it is made reaay for
execution at the failure exception control point, and the

Process
Administrator is called to suspend the task.
3.3.6.17.3 Outputs
There are no output arguments defined for Fail Task.
Vol 1
3-70
ql

Pl

3.3.06.18 Set Interrupt

This facility associates the specified interrupt with an entry statement of
a task within a MAPSE process. Set_Interrupt is called by the prologue
L associated with the enclosing declarative part and executes under the
3

current thread of control.

3.5.6.18.1 Inputs
The following input arguments are defined for Set_Interrupt:

Addr_TCB - The task control block address of the task enclosing
the interrupt entry.

Entry_No - The identification of the interrupt entry,.

Interrupt_Name The name of the interrupt.

E | Entry_Index - The identification of the entry family member.

3.5.6.18.2 Processing

The specified entry is marked as an interrupt entry. The Event Monitor is
called to set an event for the named interrupt.

5.3.6.16.3 Outputs

There are no output arguments defined for Set_Interrupt.

.

e %

o
LI DU

PPV SN

_‘i Vol 1
& 3-71
3
“

AD=A109 980

UNCLASSTFIED

COMPUTER SCIENCES CORP FALLS CHURCH VA F/8 972
ADA INTE.IATED ENVIRONMENT II COMPUTER PROGRAM D!V!LM NT SPEC==ETC(U)
F3 602-00%‘029
RADC=TR=81=364=PT=~1

)

|0 & He ps
|||”=———— vl
m" TR 2
= L&
I2S flis pee

MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAU Of STANDARDS 1463 A

3.3.6.19 Accent Exception

This facility propagates an exception in an accept statement of a task

within a MAPSE process. Accept_Exception is called by the service task
enclosing the accept statement.

3.3.6.19.1 Inputs

The following input argument is defined for Accept_Exception:

Exception - The name of the exception to be propagated.

3.3.6,19.2 Processing

The exception status of all tasks synchronized with the service task is
changed to indicate that the specified exception has occurred. When the
task failure exception is propagated, it is renamed tasking error. The
status of these tasks is changed to indicate that they are reaay for
execution and the Process Administrator is called to schedule a new task.

3.3.6.19.35 Outputs

There are no output arguments defined for Accept_Exception.

Vol 1
3-72

A e L.

Y SRR -

3.3.6.20 Attribute Terminated

This facility reports the termination status of a task within a MAPSE
process.

3.3.6.20,1 Inputs
The following input argument is defined for Attribute_Terminated:

Addr_TCB - The task control block address of the task to be reported
upon.

3.3.6.20.2 Processing

The termination status of the specified task is returned to the requesting
task.

3.3.6.20.3 Outputs
The following output argument is defined for Attribute_Terminated:

Termination_Status - The value true is returned if the specified
task has terminated.

Vol l
3-73

—'T.—ﬁ"_.T‘—r e
. Aad . hd

I bl 0 s 4 2

-

S 50 A S g s

3.3.6.21 Attribute Priority

This facility reports the priority of a task within a MAPSE process.

3.3.6.21,1 Inputs

The following input argument is defined for Attribute_Priority:

Addr_TCB = The task control block address of the task to be reported

upon.

3.5.6.21,2 Processing

The priority value defined for the specified task is returned
requesting task.

3.3.6.21,5 OQutputs
The following output argument is defined for Attribute_Priority:

Priority - The priority value of the specified task.

Vol 1
3-74

to the

G4 oo T

PSRV AP

E
{
|

e

by - 318 24

3.3.6.22 Attribute Storage

This facility reports the number of storage units allocated to a task within
a MAPSE process.

3.3.6.22.%1 Inputs
The folluwing input argument is defined for Attribute_Storage:

Addr_TCB = the task control block address of the task to be reported
upon.

3.3.6.22.2 Processing

The number of storage units currently allocated to the specified task is
returned to the requesting task.

3.3.6,22.3 Outputs
The following output argument is defined for Attribute_Storage:

Allocation - The number of storawe units allocated to the specified
task.

Vol 1
3-75

ik, o

e S R R

3.3.6.23 Attribute Count

The facility reports the number of outstanding calls for an entry of a
service task within a MAPSE process.

3.3.6.25.1 Inputs
The following input arguments are defined for Attribute_Count:

Addr_TCB - The task control block address of the task enclosing the
entry.

Entry_No - The identification of the entry to be reported upon.
Entry_Index - The identification of the entry family member

3.3.6.23.2 Processing

The length of the queue associated with the specified entry is returned to
the requesting task.

3.3.6.23.3 Outputs

The following output argument is defined for Attribute_Count:

Queue_Length - The number of entry and interrupt calls currently
queued.
Vol 1
3-76

3.3.7 Context Manager

The Context Manager functionally encapsulates a set of operations on the
Dynamic Address Domain and Shared Execution Domain that are definec¢ within
the MAPSE. Appendix A includes the specification of the Ada package

CONTEXT_MANAGER that is made available in the virtual interface. See Figure
3=1b for a logical breakdown of the Context Manager.

The Context Manager is designed to provide the facilities that are necessary
for a MAPSE process to dynamically change the address domain that it or

arother process may reference. Use of these facilities is restricted to

. MAPSE tools to safeguard the integrity of the MAPSE.

The address domain that may be referenced by a MAPSE process is initially
established in the process context map when a process is started. The map
associates an index with each address space that comprises the process
address domain. The Context Manager allows a process to change its address
space through a process context map index that may be dynamically associated
with an address domain created in the Dynamic Address Domain.

The Context Manager through the Dynamic Address Domain provides the
collection of storage units that may be acquired for a process. Each
acquisition defines an address space that may be referenced by the process
through the index associated with the domain.

In addition to supporting the Dynamic Address Domain, the Context Manager
provides the functionality required by the Shared Execution Domain that
enables miltiple processes to share common executable domains, such as the
Task Manager.

k0 e~ S i

CONTEXT
MANAGER

% Figure 3-16.

> -

ALLOCATE DOMAIN
AELEASE DOMAIN
FIND DOMAIN

AEAD DOMAIN
WRITE DOMAIN

LOAD DOMAIN

TP Ne. 03120084

Logical Breakdown

Vol1l
3-78

e ——

o e LA e £ 3 SR AP SANN 5 VL. PRI

3.3.7.1 Allocate Domain

This facility allocates storage units to a MAPSE process from the Dynamic
Address Domain. Allocate_ Domain is requested by a MAPSE process to
dynamically update the process context map of a specified process.

3.3.7.1.1 Inputs

The following input arguments are defined for Allocate_Domain:

i Addr_PCB - The process control block address of the process to

i receive the allocation.

' Map_index - The process context map index to be associated with 4
the domain. i

3 Domain_length - The number of storage units to be allocated in the

‘i domain.

9

¥ 3.3.7.1.2 Processing

The allocation request is validated. The specified number of contiguous

storage units is acquired from the Dynamic Address Domain. The process

context map for the process is updated to reference the acquired domain, and
. the domain address is made available to the requesting process. When the
j; request cannot be satisfied, the domain address is voided.

3.3.7.1.3 Outputs

The following output argument is defined for Allocate_Domain:

Addr_Domain - The domain address.

AR LB
el s,

oo b <00

Voll
s 3-79

$.3.7.2 Release Domain

This facility frees the storage units that have been acquired for a MAPSE
process from the Dynamic Address Domain. Release_Domain is requested by a

MAPSE process to dynamically update the process context map of a specified
process.

3.3.7.2.1 Inputs

The following input arguments are defined for Release Domain:

Addr_PCB - The process control block address of the process for
which the domain was acquired.

Map_ Index ~ The process context map index associated with the
domain.

3.3.7.2.2 Processing

The release request is validated. The process context map for the process
is updated to void referencing the domain to be released. The storage units
are returned to the Dynamic Address Domain for disposal. If the domain is
not included in the context map of another process, the storage units are
made available for subsequent allocation.

3.3.7.2.3 Outputs

There are no output arguments defined for Release_Domain.

3.3.7.3 Find Domain

This facility locates the domain address of the specified Load Object. Find

Domain is requested by the Process Administrator to ascertain the y
sharability of a Load Object. !

3.3.7.3.1 Inputs

The following input argument is defined for Find_Domain:

4 Load_Ob ject_Name - The name of the Load Object.
3.3.7.3.2 Processing

The find request is validated. The Shared Execution Domain for the MAPSE is
searched for the existence of the specified Load Object. If the Load Object
J is found the domain address is made available to the requesting process.

3.3.7.3.3 Outputs
The following output argument is defined for Find Domain:

Addr_Domain - The domain address of the Load Object.]

" a
S

S R S Rl > i

. Vol 1
2 3-81

3.3.7.4 Read Domain

This facility reads the contents of a specified number of storage units.

Read Domain enables a MAPSE process to read the contents of a domain that is
part of a descendent process. Read_Domain is provided specifically for the
use of the MAPSE Debugger.

3.3.7.4.1 Inputs

The following input arguments are defined for Read _Domain:

Addr_Domain -

Storage_Unit
Unit_Length

Addr_Buffer

3.3.7.4.2 Processing

The address of the domain containing the specified
storage units.

The first storage unit to be read.

The number of storage units to be read.

The buffer address.

The read request is validated. The storage units within the aadress domain

are located and their contents written to tYe referenced buffer in the

requesting process.

3.3.7.4.3 Outputs

There are no outputs defined for Read_Domain.

Voll
3-82

s 3

e T e i [R——

3.3.7.5 Write Domain

4 This facility writes the contents of a specified number of storage units.
! Write_Domain enables a MAPSE process to write the contents of a domain that

4 is part of a aescendent process. Write_Domain is provided specifically for
; use by the MAPSE Debugger.

3.5.7.5.1 Inputs
The following input arguments are defined for Write_Domain:

Addr_Domain - The domain address containing the specified storage
units.

Storage_Unit The first storage unit to be written,

Unit_Length
Addr_Buffer

The number of storage units to be written.
The buffer address.

3.35.7.5.2 Processing

The write request is validated. The storage units within the address domain

are located and are overwritten with the contents of the referenced buffer
in the requesting process.

3.5.T.5.5 Outputs

There are no output arguments defined for Write_lomain.

.. o b .- C |
S emlan ok

FORPUR A S

Vol 1
o 3-83

3.3.7.6 Load Domain

This facility load$ the specified Load Object into the Shared Execution
Domain of the MAPSE. Load_Domain is requested by the Process Administrator
3 to enable common executable domains to be shared among MAPSE processes.

3.3.7.6.1 Inputs

The following input argument is defined for Load_Domain:
Load_Object_Name - The name of the Load Object.

3.3.7.6.2 Processing

The load request is validated. The specified Load Object is loaded into t
Shared Execution Domain and its domain address is made available t
requesting process. If the Load Object cannot be accommodated in the
Execution Domain, the domain address is voided.

3.3.7.6.3 Outputs
The following output argument is defined for Load_Domain:

Addr_Domain - The domain address of the Load Object.

'1 Ny

/S

; —p——
M AR A i R e iy . .
- b8 8. & 'x .;,?‘ - . ” e i tem . s " . . A | m‘ . PR P .

[

3.5.8 Event Monitor

The Event Monitor functionally encapsulates a set of operations on the data
structures defined as the Event Queues. Appendix A includes the
specification of the Ada package EVENT_MONITOR that is made available in the
virtual interface. See Figure 3-17 for a logical breakdown of the Event
Monitor,

The Event Monitor is a functional unit within the Kernel of the KFW. It is
designed to reconcile the asynchronous performance of host system facilities
with the execution of concurrent MAPSE processes. A primary responsibility
of the Event Monitor is the synchronization of the MAPSE clock. This is
achieved by requesting an event to be posted at the expiration of a standard
quantum of time. This event is typically represented in the host system

either as a type of interrupt or through an event mechanism.

In addition to maintaining the MAPSE clock, the Event Monitor includes
facilities to set, raise, wait, and cancel events. These facilities provide
services essential to the functionality supplied by the 1/0 Dispatcher and
Task Manager in support of the requirements of a MAPSE process.

The specification of an event control block contains information that
describe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>